
NEC PC-8300

Technical Reference
Manual

F382-F383

F384-F385

F386-F388

F389-F388

F38F-F3ql

F392-F394

F395-F'3B8

F3B9-F38E

. "F38F

P·i9-F3C 1.

F3C4-F3C5

F3C6-F3C7

F3C8-F3CA

F3CB-F3CD

F3CE,-1"'4i)0

F301~303

F304-F306

F3D7-F3O9

F3D~,

F308

PC-8300A SYSTEM WORI< AREA'

Flag for 1st r e s e t or mot
4O8A Not 1st power on

!:iighes l,; memory loc~ t i on

Pot,,Jer : on hook.

Barcode res der hook

UART t-,ook

Interval timer hook

LOW BATTERY interrup t vectoic-

2nd ROM check rout i tie

2nd ROM EXECUTE rout i ne

2nd ROM flag

TELCOM function key deta top address

TERM function key data end+l address

Pointer for statement process address table

Pointer for function process address table

Value check routine hook

1 character input from CASSETTE hook

1 character 6uti::?1.ttto
i., , . . ;_;, .<,:·

CASSETTE .read on hoo-~ .- .

Statement hoo k
h i ·>k.

Insert mode flaQ
., . j ~:- '

ihe bank nu mber when ~.<;>,we.r 9'1~~~'.f,·
00: Bank l
08: Bank '.2
0C: Bank 3

l

F30C

F'300-F30F

F3E0-F3El

F3E2-r3E3

F3E4

F3E5

F3E6

F3E7

.Fl'e:s

F3E9

F3EA

F3EB·

F3EC

F3ED

F3EE

F3EF

F3F0

F3Fl

F3F2

F3F3

F3F4

F3FS

F3F6-F3F9

Cursor pattern in insert mode

Error routine hook

Function key data pointer

PAST key data pointer

Console flag
00: LCD
xx: CRT

Cursor position Y

Cursor position X

Max line number on LCD

Max character length on LCD

,Function key display flag

Sereen lock tlag (No ~croll)

Cursor Fleg
00: Off
xx: On

Cursor position y on LCD

Cursor position X on LCD

Cursor position Yon CRT

Cursor position X on CRT

Max line number on CRT

Max character length on CRT

Esceu:>e sec:iuenee counter

Area for F3F2

Reverse mode flag
00: Normal
xx .: Reverse

Max character length on Printer

The st~ing for printer line number

2

F3FA-F.3FB

F3FC

F3FO

F3FE=F3FF

F4.00

F4.01

F4.02

F4.03

F4.04.

F4.05

F4.06-F4.08

F4.0C-F4.0E

F4.0F-F412

F4.13-F4.15

F4.16-F4.23

F4.24.-F426

F4.27-F4.4.6

F4.4.7-F44.A

F446-F44O

F44.E-F452

F453

F454.

F455

I

Graphics cursor (Y,X)

Current mode
Bit 7: TEXT
Bit 6: TELCOM

Flag for EDIT mode

Error entry

Not used

Key wait flag
00: Not wait
xx: Wait

The timer for auto power otf

TERM full, half flag

TERM Echo flag

Flag for CR,LF mode

RS-232C control string

When .CO file was executed, this entry Will be
used for the start entry

Not used

Subroutine for OUT

High s~eed SUB routine

Work area random number

Data for random number

Last r"andom number

Subroutine for INP function

Ou1nmy end marker for direct stateme~t

Not used

The value in LPOS(~)

F456

F457

F458

F459-F45A

F456-F45C

F45D-F45E

F45F-F461

F462-F59F

F5A0

F5Al-F6A2

F6A.3

F6A4

F6A5-F744

F'745

F746-F7E5

F7E6-F826

F827-F82E

F82F-F830

F831

F832-F830

F83E-F83F

F840

F841

F842-F84B

Output select flag
00: Console
xx: Printer

The column position inside of print statement

DEL. BS flag

Stack top address

Current line number

BASIC TEXT pointer

Pointer for VAL function

Buffer for pre-compile

Terminator for INPUT

Buffer f9r LINE INPUT

Stopper for LINE INPUT full

·Cursor position for CONSOLE (X)

Function key data area

Directory flag

Function key data area for BASIC

When RESET. the IPL file execution

Line terminate ~lao

1st cursor position in SCREEN EDIT

Cursor fleg
00: Normel
xx.: Insert mode

Buffer for timer IC

Interval timer counter

Auto power off timer (x6 second= Power off)

Flag for time out

Not used .

4

F84.C-F84.E

F84.F-F86F

F870-F87A

F87B-F885

F886-F890

F891-F'977

F978

F979-F97A

F978

F97C

F97E-F980

F98E

F98F-F990

F991-F998

F999

F99A

F998-F9A6

F9A7

F9A8-F9A9

F9AA-F9AB

F9AC-F9AO

F9AE-F9AF

F9B0-F9Bl

F9B2

F9B3

F9B4.-F965

The mode of COM interrupt and entry

ROM file directory

Non-registered file directory

PAST file directory

EDIT file directory

User file directory

End of directory (FF)

Directory pointer

Back UP cheracter for CASSETTE input

Beck u.p ch!lracter for RS-2.32C input

Back UP cheracter for RAM file input

Beck UP character for PAST file

File number

2~d ROM director~

IPL flag

Cursor fleg buffer for screen edit

FA8E-FA99 buffer for EXEC

A register buffer for EXEC

HL register buffer for EXEC

Start line address for LIST

Last line+l address for LIST

Stesck pointer save area for muto power off

RAM start address

TERM Down Load flag

TERM Up Load flag

Pointer for Down Load

5

F9B6

F9B7

F9B8

F969

F9BA

F9BB

F9BC

F9BO

F96E

F96F

F9C0-F9C1

F9C2-F9C3

F9C4-F9C5

F9C6-F9C9

F9CA-F9CB

F9CC-FA5F

FA60-FA87

FA88-FA89

FASA

FASB

FASC

FASO

FA8E-FASF

FA90

FA91

FA92-FA99

Before character for TERM

RS-232C Output SI,SO flag

RS-232C Input SI,SO flag

When console is not CRT, the value is not zero

Menu mode flag

Menu mode sub-command flag

Hook number save area

Cursor X position in TEXT

F3EB save area

F3E9 save erea

Start address for .CO file

Length of .co file

Execute address of .co file

Extension .

Data number from LOAD start

Hook address teble

LCD reverse attribute table

End of file in access file

Array flag for valueble

The type of floating accumulator

Flag for pre-compile

Flag for line number in pre-compile

Text pointer save area

Character length when TEXT reed

Value type when TEXT read

Value when TEXT read

6

·--~ .

FA9A-FA98

FA9C-FA90

FA9E-FABB

FABC-FABE

FABF-FAC0

FAC1-FAC4

FAC5-FAC6

FAC7-FAC8

FAC9

FACA

FACB-FACC

FACO

FACE-FACF

FA00-FAD1

FA02-FA03

FA04-FA05

FA06-FA07

FAD8-FAD9

FAOA

FADB-FADC

FADO-FAOE

FADF-FAE0

FAE1-FAE2

FAE3-FAE4

FAE5-FAE6 -

End ot string space

Stack pointer for string

Stack area for string

Descriptor for string

Max address of free area of string space

Work area for string process

TEXT pointer save area for FOR

ERROR LINE NUMBER when DATA

Valuable type in next

READ, INPUT flag

Buffer for pre-compile code

Line number, Line address flag
00: Line number
xx: Line address

TEXT addre$S before statement

STACK pointer for before statement

Line number in ERROR

Current line number

TEXT address in ERROR.

ON ERROR GOTO jump address

Flag for error trap

Work area for calculation

Line number when STOP and END

TEXT address for CONT

ASCII file start address

CO file start address

Variable area top address

7

FAE7-FAE8

FAE9-FAEA

FAEB-FAEC

FAED-FB06

FB07-F60A

FB0B

FB0C-FB0D

FB0E-F"Bll

FB12-FB13

FB14

FB15-FB16

FB17-FB18

FB19

FBlA

FB18-FB22

FB23

FB24.-FB2B

FB2C

F82D

F"B2E-FB35

FB36-FB4D

FB4E-FB50

FB51-F858

F659-FB5D

F85E-F860

FB61

Array area top addre$~

Free area top address

DATA pointer wh~n READ

Variable table

Work for garbage collection

Not used

Work for garbage collection

Not used

Work for garbage .collection

Not used

Work for garbage collection

Not used

Work for VAL function

Work for output

$ave area for FAC

Not used

FAC

Flag for FAC

Not used

Argument for doubl~ calculation

Buffer for number string conversion

Not used

Work for double calculation (DIV)

Not used

Work for single calculation (MUL)

MAX drive number

8

FB62

FB63···FB6'­

F865-FB66

FB67-FB68

F869

FB6A-FB68

F66C-FB6D

FB6E-FB6F

FB70-FB71

FB72

F673-FB77

FB78-FB80

FB81-FB89

FB8A

FB88

FB8C

FB8D

FB8E

F68F-FB90

FB91

FB92

F69.3

FB94

FB95

FB96-FBBF

FBC0-FCFF

MAX files number

Top address of file pointer

Top address of drive data

File buffer address of number zero

Current Drive number

Current drive data address

Current FCB address

Directory pointer for directory search

Directory position in search

Auto run flag after LOAD

,Work for disk

File name area

Old file name in NAME

Track number in DSKlS, OSK0$

Sector number in DSK1S,DSK0$

Flag for program access

Flag for program SAVE

Disk BUSY flag

Disk error counter

Read after write flag

EBCDIC conversion flag

EBCOIC conversion buffer

Condition of DISK adapter

Condition of disk

Stack for initialization

Screen buffer for before page

9

FD00-FE3F

FE40

FE:41

FE42

FE4.3

FE44

FE45

FE46

FE47

FE48

FE49

FE4A-FE48

FE4C

FE4D

FE4E

FE4F-FE5F

F'E60

FE6l

FE62

FE63-FE67

FE68

FE69-FEA8

FEA9

FEAA

FEAB-FEB0

FEB1-FE~6

Screen buffer

Flag for XON.XOFF

Not used

Flag for X perameter

Flag -for USART

90H out COPY

Charc1eter counter for RS-2.32C buffer

Character get position for RS-232C buffer

Character put pointer for RS-232C buffer

Character position when error was detected

Flag for XON,XOFF seQuence

Baud rete t~ble

RS-232C receiv~ data mask p~ttern

Key seen interval timer

Work for key scan

Flag for key input

Shift mode flag for input

Work for encode of key code

Repeat counter for key input

Work for key input

Data counter for key input

Buffer for key input

Input condition of break charecter

Stetus of function key dis.play

Work for cursor display

save area for character Pattern

10

,.

FE67

FEB8

F'EB9

FEBA

FE6B-FEBC

FEBD-FEBE

FEBF-FEC0

FF-Cl

FEC2

FE'C3

FEC4-FFC1

Statu$ of' c1.1rsor
Bit 7: Cursor display mode ON.OFF
Bit 0: Cursor ON.OFF

Cursor blinK timer

Cursor position (Y)

Cursor position (X)

WorK tor cursor blinK

WorK for LCD display

Data pointer f'or user define character

Disk BASIC or not flag

Disk SIO time out timer

1Oisk BASIC boot flag

~S-232C receive buffer

11

CHAPTER 1
1.1
1.2

CHAPTER. 2
2.1
2.2

CHAPTER 3

Notation and Floating Accumulator •••••••••••••••••..•. 2
Notation of Floating Point Numbers ••••••.••••...•••••...••• 2
Floating Point Aecumulators and Related Variables ••...•.•.•. 4

FLOATING POINT INPUT ANO OUTPUT ••.••••••.•.•...•••.•••. 6
Input • •••••••••••• 6
Output • .•.•••..•••.• ·• ••••••.•••••••...••.•••.... ••• 7

FLOATING POINT MOVEMENT ••••••••••••••••••.•.•• •••.• 9
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.2
3.2.2
3.2.3

Single Precision Numbers ••••••••••••••••.••••••••••••• • •.• 9

CHAPTER 4
4.2
4.3

CHAPTER. 5
5.1
5.2
5.3
5.4

CHAPTER 6
6.1
6.1.1
6.1.2
6.1.3
6 .1. 4·
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4

Move number from memory [BL] to PAC •••
Move registers (B,C,D,E) to FAC ..••••..••.••••..••.
Move FAC to registers (B,C,D,E) •••••.••.••.••.

••••••. 9

Get number in registers (B,C,D,E) from memory [HL] .•.•.
Move number from FAC to memory [BL] ••••••••••••.•••••••••

.10
.. 11

... 12
••. 13

Move number from [DE] to [HL] ••••••.••.•.•..•••.
~Y Ty'pe Number ••••••••.•.••••••••••••.•••••••.••••.••
Move any type value
Move any type value

from memo:i:-y [HL]
fro_rn FAC to memory

to FAC •••
[HL] •.•

COMPARISON • ••
Single Precision ••
Double Precision ••

...

.

.

. .•...••. . 1.4
. • 15

.••• • 1·6

.... . 17

...... · .. . 18

. 19
.•... 20

CONV"ERSION • •. • •••.•••••••.••• • •.••••••••••••••••••••.•••••• 21
Integer to Sin.gle•.•.... . 21
Single to Integer ••••• ~ •••••••••••••• ~ •••• ~ •••••••••••••••.• 22
Single to Double _ 23
Double to .Single ... 24

Bas±·c: Operation 25
Integer Arithmetic. .. 25
Integer addition •...•••••...•...••....................... ... 25
Integer Subtraction .••• ~ 26
Integer Multiplication •••••••••••••••••••••••.•••••••••••••• 27
Integer Division ... 28
Single Precision Arithmetic..................... . .••••••. 29
Single Precision Addition ••••••••••••••••••••••••..•.••••••• 30
Single Precision Subtraction •••••••.••••••••••••••••..•••••• 31
Single Precision Multiplication ••••••••••••••••••••••••••••• 32
Single Precision Division ••••••••..••••••••••••.•••••••••. 33
Double Precision Arithmetic ••••••••••••••••••••••••••••••••. 34
Double Precision Addition •••••••••••••••••••••••••.••••••••. 35
Double Precision Subtraction •••••••••••••••••••••••••••••••• 36
Double Precision Multiplication 37
Double Precision Division ... 38

CHAPTER. 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Mathematical Functions.
Pow•r. . . .

. '39
9

BXP •• •••••••••••• . •• -40
LOG •••• .
SQR.
s·xx· • •••.••••••••••••••••
cos ••••

.

• • 41
.42

.•.......... 43
... 44

• • 45 TAN.
ATN.
R.ND.

... 46
• •••••••••••• 4.7 .

Accumulator,2,4,5,34
Accumulators,4
Added,2,25,30,35
Addition,25,30,35
ADDRESS,6,7,9,10,11,12,13,
14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,30,
31,32,33,35,36,37,38.,39,
40,41,42,43,44,45,46,47
Angle,43,44,45,46
Aretangent,46
Area,5,13,14,15,17
ARG,S,19,20,22,34,35,36,37,38
Argument,5,18,19,20,22,25,
26,27,28,30,31,32,33,34,
35,36,37,38,39,40,41,42,
43,44,46
Arithmetic,25,29,34
ATN,46

Base,39,40,41
Basie,25
Bias,2,29
Binary,3
Byte,29
Bytes,2

CALL,22,39,41,42
can,22
CONDS,23,24
CONIS,22
CONSD,24
CONSI,21
COS,44
COSINE,44

DADD,35
DADH,40
DAH,24
DCOMP,20
DDIV,38
DFAC,4,6,7,20,23,24,34,35,
36,37,38
Division,28,33,38
DMULT,37
DSUB,36

Encoding,4
Equals,18
EXP,40
Exl)onent,2,3,4,5,8,11,12,
29,32,33,34,39

FAC,4,5,6,7,9,10,11,13,16,
17,18,19,21,22,23,24,25,
26,27,28,29,30,31,32,33,
36,37,38,39,40,41,42,43,
44,45,46,47
FADD,30
FBUFP'R,5,7,8
FCOMP,19
FDIV,33
Field,8
FIN,6
Floating,2,3,4,5,6,8,9,29,34
FMULT,32
FOUT,5,7
FPWR,39
P'SUB,31

Get,12,22

IADD,25
ICOMP,18
IDIV,28
IMULT,27
Integer,4,5,6,7,8,15,16,
17,18,21,22,25,26,27,2!,39
ISUB,26

LOG,41
Logarithm's,40,41
Long,2
LXI,22

Mantissa,2,4,5,11,12,29,
32,33,34,39
MOVFM,9
MOVFR,10
MOVMF,13 .
MOVRF,11
MOVRM,12
MOVVFM,15
Multiplication,27,32,37

Order,2,3,4,5,11,12,25,
26,27,29,32,33,34,39
Overflow,6,25,26,27,28,
30,31,32,33,35,36,37,38,
39,45

POP,22
Power,39
Precision,2,3,4,5,6,7,9,
10,11,12,13,14,19,20,21,22,
23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,
42

1

CHAPTER 1 Notation and Floating Accumulator

1.1 Notation of Floating Point Numbers

Floating point numbers (single precision and double
precision) are represented in the PC-8300A ROM as follows.
The sign of the number is indicated by the first bit of the
ment i ssa, 0 means positive and 1 means negative. The
mantissa is 24 bits long for single precision number, or
56 bi ts long for double precision number. The decimal
point is assumed to be to the left Most Significant Bit of
the mantissa. The mantissa ranges from 0.5 inclusive to 1
exclusive.

NUMBER=MANTISSA * 2 ~ Exponent

The mantissa is positive. with a one assumed to be where the
sign bit is. The sign of the exponent is the first bit of
the exponent. The exponent is stored in excess 80H (ie:
with a bias of 80H). So, the exponent is a signed 8 bit
nu~ber with 80H added it. An ·exponent of zero means the
number is zero,. the other bytes are ignored.

The above notation is the same notetion
8000 and PC-8800.

use by the PC-

The memory representation of a single precision floating
point number is as follows:

Bits 17-24
Bits 09-16
Bits 00-07

Low order of the mantissa.
Middle order of the mantissa.
High order of the mantissa.

17 - 24 09 - 16 00 - 07 Exponent
+ --- ---+--------+--------+--------+
:00000000:00000000:00000000:00000000:

+--------+--------+--------+--------+
01234567 01234567 01234567

Note: Bit 00 of the mantissa is al~ays 1.
This bit is also the sign bit.

2

(Implied)

For example the number 4095 is represented in single
precision floating point format as follows:

17_- 24 09 - 16 00 - 07 Exponent

+--------+--------+--------+--------+
:00000000:11110000:01111111:10001100:

+--------+--------+--------+--------+
01234567 01234567 01234567

00 F0 7F SC

With the bits laid out in a logical left to right order the
binary number would be displayed as follows:

.1111 1111 1111 0000 0000 0000 • 2·0ch

or

1111 1111 1111. 0000 0000 0000

3

1.2 Floating Point Accumulators and Related Variables

The PC-8300 ROM maintains a few variables that are used
throughout the math package.

1. VALTYP FA86H (64139D)

VALTYP indicates the type of number stored in the Floating
Point Accumulator (FAC or DFAC). The encoding is shown
below.

[VALTYP] =2 (Integer Number)
=4 (Single Precision Number)
=8 (Double Precision Number)

2. DFAC FB24H (642920)

Double Precision Floating Point Accumulator.

Double precision storage format:

[DFA~]
[DFAC+l]
[DFAC+2]
[DFAC+3]
[DFAC+4]
[OFAC+SJ
[DFAC+6]
[DFAC+7]

=Lowest order of the mantissa
=
=
=
=
=
=Highest order of mantissa
=Exponent

4

3. FAC FS2SH (642960)

Floating Point Accumulator.

The floating point ac6umulator is used for both single
precision and integer math routines.

Integer storage format:

[FAC]
[FAC+l]

=Low order of the integer
=High order of the integer

Single Precision storage format:

[FAC]
[FAC+l]
[FAC+2]
[FAC+3]

=Low order of the mantissa
=Middle order of the mantissa
=High order of the mantissa
=Exponent

4. ARG FB2EH (643020)

Second argument storage area for double precision math
functions.

[ARG] =Lowest order of the mentisse
[ARG+l] =
[ARG+2] =
[ARG+3] =
(ARG+4] =
(ARG+5] =
[ARG+6] =
(ARG+7] =Highest order of the mantissa

5. FBUFFR FB37H (643110)

FBUFFR is used by the function FOUT (Convert a floating
point number to a printable string) to store the result
string. The string is terminated by a null code.

[FBUFFR] =First charact~r· of the string
[FBUFFR+l]=Second character of the string
[FBUFFR+2]=
(FBUFFR+3]=
[FBUFFR+4]=
(FBUFFR+5]=
[FBUFFR+6]=
(FBUFFR+n]=Null code

5

CHAPTER 2 FLOATING POINT INPUT AND OUTPUT

2.1 Input

DESCRIPTION

The FIN routine converts the string representation of a
number in (HL] into an internal representation of the
number, and leeves it in FAC. The value type is set
in VAL TYP. Syntex is not checked in this routine. So
syntax must be checked in the user's routine, so
that at exit, HL points at the last character of the
string. The string must be terminated by a null. (hex
00)

NAME
ADDRESS

ENTRY

EXIT

FlN
3726H (141180)

(HL]

(FAC]

or

(DFAC]

Pointer to top of string

Result at this address if
Integer or single
precision.

Result at this address if
Double precision number.

(VALTYPJ 2
(VALTYPJ 4
(VALTYP] 8

(Integer)
(Single)
(Double)

REGISTERS ALTERED All

If an overflow occurs,the control is transferred to
the error handling.

EXAMPLE:

Input String At Exit

"1. 5''. HL Points to "5"
"1.5E+10" HL points to "0"
"ABC" HL points to .. c ..

Note: All strings must be null terminated.

6

2.2 Output

DESCRIPTION

Th.e FOUT routine converts the number in FAC or DFAC
to a string representation, and leaves it in FBUFFR.
The format is specified in registers A,B and c.

If the format is fixed and the length of digits in the
number exceeds the number of places specified by
register c, "%" is output before the number and the
original contents of the FAC is lost. The terminator
of output string is 00H.

NAME
ADDRESS
ENTRY

7

FOUT
38A8H (145040)

[FAC]

or

[DFAC]

(VALTYP]

[VALTYP]
[VALTYP]

If Integer or Single
Precision.

If Double Precision.

2 (Integer)

4 (Single)
8 (Double)

[A] bit 7=0 Output free formet

7=1 Output fixed format

bit 6=1 Group the digits in the integer part
of the number into groups of three and
seperete the groups by commas.

bit 5=1 Fill the leeding spaces in the field
with esterisks.

bit 4=1 Output with l!I floeting dollar sign.

bit 3=1 Output sign of i!!I positive number.

bit 2=1 Output the sign of the number after
the number.

bit l Unused

bit 0=1 Output in floeting point notation.

=0 Output in fixed point notation.

[B] The number of Pleces in the field to .the left
of the decimal point.

[C] The number of pleces in the field to the right of
the decimel point (includes the decimal point, but
does not include the 4 positions for the
exponent).

EXIT [FBUFFR] Cherecter

REGISTERS ALTERED All

8

CHAPTER 3 FLOATING POINT MOVEMENT

3.1 Single Precision Numbers

3.1.l Move number from memory (HL] to FAC

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

9

M0VFM

31O0H (127520)

[HL]

[FACJ

Pointer to single
precision number

Single Precision Number.

[BJ,(C],[O],(E],[H],(L]

3.1.2 Move register$ (B,C,D,E) to FAC

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

10

MOVFR

31D3H (127550)

None

[FAC]

[Dl, CE]

Single precision number

3.1.3 Move FAC to reoi•ters (8,C,O,E)

NAME

ADDRESS

ENTRY

Exit

REGISTERS ALTERED

11

MOVRF

310EH (127660)

CFACJ Single Precision Number.

CB] Exponent
(C] High order of Mantissa
CD] Middle order of Mantissa
CE] Low order of Mantissa

[B],[C],[D],[E],[H],{~]

3.1. 4 Get number in registers (B,C,O,E) from memory [HL]

NAME

ADDRESS

ENTRY

Exit

REGISTERS ALTERED

12

MOVRM

31E1H (127690)

[HL]

[B]
[C]
[D]
[E]

Pointer to single
precision number

Exponent
High order of Mantissa
Middle order of Mantissa
Low order of Mantissa

[BJ. (CJ. [D], [E], [H], [L]

3.1.5 Move number from FAC to memory (HL]

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

13

MOVMF

31EAH (127780)

[HL)

(HL)

Pointer to memory area for
single precision number

Single precision number

(A),(B],(D],(E],(H],(L]
(HL)=(HL)+4

3. 1. 6 Move number from (DE] to (HL]

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

14

MOVE

31EOH (127810)

(DE]

[HL]

[HL]

Pointe~ to single
precision number

Pointer to memory area
for single precision number

Single precision number

[A], [B], [D], CE], (H], (L]
[HL]=[HL]+4

3.2 Any Type Number

3.2.1 Move any type value from [DE] to [HL]

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

15

MOVVFM

31F2H (127860)

(DE] Pointer to memory area
for velue

[VALTYP] 2 (Integer)
4 (Single)
8 (Double)

[HL] Value

[A], (B], [O], [E], [HJ, (L]

3.2.2 Move any type value from memory [HLJ to FAC

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

16

VMOVAF

3218H (12834.D)

[HL] Pointer to value
[VALTYP] 2 (Integer)

4 (Single)
8 (Double)

[FAC] Value

[A],[B],{D].[E],[H],[L]

3.2.3 Move any type value from FAC to memory [HL]

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

17

VMOVMF

3221H (128330)

(HL] Pointer to memory area
for value

(VALTYP] 2 (Integer)
4 (Single)
8 (Double)

[FAC] Velue

[A],(B],(D],(E],(H],(L]

CHAPTER 4 COMPARISON

4.1 Integer

DESCRIPTION

The ICOMP routine compares two integer numbers in HL
and FAC, and leave the result in A.

ICOMP NAME

ADDRESS

ENTRY

3259H (128890)

EXIT

(DE]
[HL]

A= 1

A= 0

A=-1

REGISTERS ALTERED [A]

18

First argument
Second argument

If the first argument is
less than Second
argument.

If the first argument
equals Second argument.

If the first ar~ument is
greater. than Second
-argument.

4.2 Single Precision

DESCRIPTION

The FCOMP routine compares two single precision numbers
in registers and FAC, and leave the result in A.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

19

FCOMP

322EH (128460)

[BJ, (C], (D], [E]
(FAC]

First argument
Second argument

A=l
A=0
A=-1

A,H,L

if first arg.(Second arg.
if first arg.=Second arg.
if first erg.)Second arg.

4.3 Double Precision

DESCRIPTION

The DCOMP routine compares two double precision
numbers in ARG and DFAC and leaves the result in A.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

DCOMP

326FH (129110)

[ARG]
[DFAC]

A=l
A=0
A=-1
All

First argument
Second argument

if first arg.(Second arg.
if first arg.=Second arg.
if first arg.)Second arg.

CHAPTER 5 CONVERSION

5.1 Integer to Single

DESCRIPTION

The CONSI routine converts the integer in FAC to a
sinole precision number, and leaves it in FAC.

NAME

ADORES$

ENTRY

EXIT

CON$!

32EDH (130370)

[FACJ Integer

[FAC] $ingle precision number
[VALTYP] 4

REGISTERS ALTERED All

21

5.2 Single to Integer
DESCRIPTION

ERROR:

NORMAL:

The CONIS routine truncates the single precision number
in FAC and converts it to an integer, and leaves it in
FAC. If the argument is too big (erg. < -32768
or arg. > 32767), it can not be converted to an
integer. So the control is transferred to the
error hendler.

NAME

ADDRESS

ENTRY

EXIT

CONIS

32ADH

[FAC]

[FAC]
[VALTYP]

Single precision number

Integer
2

REGISTERS ALTERED All

Sample program

LXI H,NORMAL
PUSH H
CALL CONIS

POP H

; Get return address
Push it on steck

; Call CONIS

Error handling routine
Reset stack pointer

Normal return

5.3 Single to Double

DESCRIPTION

The CONDS routine converts the single precision number
in FAC to e double precision number and leaves it in
DFAC.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

23

CONDS

3304H (130600)

[FAC]

[DFACJ
[VALTYP]

Single precision number

Double precision number
8

CA] .• CH J , [L]

5.4 Double to Single

DESCRIPTION

The CONOS routine converts the double precision number
in OFAC to a sinole precision number and leaves it in
FAC.

CONSD NAME

ADDRESS

ENTRY

EXIT

320AH (130180)

[OFAC]

[FAC]
[VALlYP]

REGISTERS ALTERED All

24

Double precision number
-

Single precision number
4

CHAPTER 6 Basic Operation

6.1 Integer Arithmetic

6.1.1

Integer arithmetic is performed with 16 bit signed integers.
The values range from +32767(7FFP'H) to -32768(FFFFH).

Integer addition

DESCRIPTION

First argument is added to the second argument. Result
is in the "FAC". When en overflow occurs, the result
is . converted to a single precision number and
placed in the FAC, and the VALTYP is set to 4.

NAME
ADDRESS

ENTRY

EXIT

IADD
3403H (133150)

[OE] First argument
[HL] Second argument

REGISTERS ALTERED· All

Condition: No overflow

[FAC]=[HL]=Result in integer.

Integer storage format:

[FAC]
[FAC+l]

=Low order of the integer
=High order of the integer

[VALTYP] =2 Integer

Conaition: Overflow

[VALTYP] =4 Single Precision

[FAC] . =Result in single precision.

25

6.1.2 Integer Subtraction

DESCRIPTION

The second argument is subtracted from
result is left in the "FAC". When
occurs, the result is converted
precision number and le~t in the FAC ,
is set to 4.

NAME
ADDRESS

ISUB
33F7H (13303D)

the first. The
an overflow
to a single

and the VALTYP

eNTRY

EXIT

(OE] First argument
[HL] Second argument

REGISTERS ALTERED All

Condition: No overflow

[FACJ=[HL]=Result in integer.

Integer storage format:

[FAC]
(FAC+l]

=Low orde~ of the integer
=High order of the integer

[VALTYP] =2 Integer.

Condition: Overflow

[VALTYP] =4 Single Precision

(FAC] =Result in single precision.

26

6.1.3 Integer Multiplication

DESCRIPTION

The first argument is multiplied by the second. The
result is left in the "FAC". When overflow occurs,
the result is converted to a single precision
number and left in the FAC, and the VALiYP is set to 4.

Name
Address

ENTRY

EXIT

IMULT
3423H (133470)

[DE] First argument
[HL] Second argument

REGISTERS ALTERED All

Condition: No overflow

[FAC]=[HL]=Result in integer.

Integer storage format:

[FAC]
[FAC+l]

=Low order of the integer
=High order of the integer

[VALTYP] =2 Integer

Condition: Divide by zero.

Control is transferred to the error handler.

27

6. 1.4 Integer Division

DESCRIPTION

The first ergument is divided ·by the second. The
quotient is left in [DE] and the remainder is left in
[HL] ; If the divisor is 0, e "Division by zero" error
occurs, and control is transferred to the error
handler.

NAME
ADDRESS

ENTRY

EXIT

IDIV
347AH (134340)

[DE] First ar~ument (Dividend)
[HL] Second ergument (Divisor)

[DE] Remeinder
[HL] Quotient

REGISTERS ALTERED All

Condition: Overflow

[VALTYP] =4 Single Precision

[FAC] =Result in single precision.

*******This function does not celculete the remainder correctly.

28

6.2 Single Precision Arithmetic

Single precision erithmet ic is performed on four byte
numbers. The numbers have a 3 byte mantissa and a 1 byte
exponent with a bias of 80h.

Single Precision storage format:

[FAC]
[FAC+l]
[FAC+2]
[FAC+3]

=Low order of the mantissa
=Middle order of the mantissa
~High order of the mantissa
=Exponent

The memory representetion of e single precision floating
point number is as follows:

Bits 17-24
Bits 09-16
Bits 00-07

Low order of the mantisse.
Middle order of the mantissa.
High order of· the mantissa.

17 - 24 09 - 16 00 - 07 Exponent
+--------+--------+--------+--------+
:00000000:00000000:00000000:00000000:
+--------+--------+--------+--------+

01234567 01234567 01234567

29

6.2.1 Single Precision Addition

DESCRIPTION

The second argument is edded to the first argument.
The result is stored in FAC.

NAME
ADDRESS

ENTRY

EXIT

FADD
2EBBH (119630)

[HL] Address of the first argument.
[FAC] Second argument.

REGISTERS ALTERED All

Condition:

Condition::

No Overflow

[FAC] Result

Overflow

Control transferred to the error handler.

30

6.2.2

Condition:

Single Precision Subtraction

DESCRIPTION

Subtracts the
ergument, and

second argument from the first
leaves the result in FAC.

NAME
ADDRESS

ENTRY

EXIT

FSUB
2EC1H (119690)

[HL]
[FAC]

Address to first argument.
Second argument.

REGISTERS ALTERED All

Condition:

Overflow

No Overflow

[FAC] Result

Control transferred to the error handler.

31

6.2.3 Single Precision Multiplication

DESCRIPTION

Multiplies first argument by second argument, and
leaves the result in FAC .

NAME
ADDRESS
ENTRY

. EXIT

FMULT
3040H (123520)

First argument storage format.

[B] Exponent
[CJ High order of Mantissa
CD] Middle order of Mantissa
[E] - Low order of Mantissa

Second argument storage format.

[FAC]
· [FAC+l]
[FAC+2]
[FAC+3]

Low Order of the mantissa
Middle order of the mantissa
High order of the mantissa
Exponent

REGISTERS ALTERED All

Condition:

Condition:

No Overflow

[FAC] Result

Overflow

Control transferred to the error handler.

32

6.2.4 Single Precision Oivisi.on

DESCRIPTION

Di vi des the first argument by second argument, and
leaves the result in FAC.

NAME
ADDRESS
ENTRY

EXIT

FDIV
30A5H (124530)

First argument storage format. (Dividend)

(B]
(CJ
(O]
[EJ

Exponent
High order of Mantissa
Middle order of Mantissa
Low order of Mantissa

.. S&cond argument storage format. (Divisor)

[FAC]
(FAC+l]
[FAC+2]
(FAC+3]

Low order of the mantissa
Middle order of the mantissa
High order of the mantissa
Exponent

REGISTERS ALTERED All

Condition: No Overflow

[FAC] Result

Condition: Overflow or divide by zero.

Control transferred to the error handler.

33

6.3 Double Precision Arithmetic

When performing double precision arithmetic the arguments
must be in the following format. The result will be stored
in the Double Precision Floating Point Accumulator. (DFAC)

The first argument is stored in the Double Precision Floating
Point Accumulator. (DFAC) FB24h (64292d)

(DFAC]
(DFAC+l]
(DFAC+2]
[DFAC+3]
(DFAC+4]
(DFAC+S]
(DFAC+6]
(DFAC+7]

=Lowest order of the mantissa
=
=
=
=
=
=Highest order of mantissa
=Exponent

The second argument is stored in the Double Precision
argument. (ARG) FB2Eh (64302d)

(ARG]
[ARG+l]
(ARG+2]
(ARG+3]
[ARG+4]
[ARG+S]
[ARG+6]
(ARG+7]

=Lowest order of the mantissa
=
=
=
::::

=
=Highest order of mantissa
=Exponent

34

6.3.1 Double Precision Addition

DESCRIPTION

The first a~gument is added to the second ergument.

NAME
ADDRESS

ENTRY

EXIT

DADD
34FSH (135600)

[DFAC]
[ARG]

First argument
Second argument

REGISTERS ALTERED All

Condition:

Condition:

No Overflow

[DFAC] Result

Overflow

Control trensferred to the error hendler.

35

6.3.2 Double Precision Subtraction

DESCRIPTION

Subtrects the second argument from the first
argument, end leaves the result in FAC.

NAME
ADDRESS

ENTRY

EXIT

DSUB
34F1H (13553D)

(DFAC]
(ARG]

First argument
Second argument

REGISTERS ALTERED All

Condition:

Condition:

No Overflow

[DFAC] "Result

Overflow

Control transferred to the error handler.

36

6.3.3 Double Precision Multiplicet~on
DESCRIPTION

Multiplies the first ergument by second argument, and
leaves the result in FAC.

NAME
ADDRESS
ENTRY

EXIT

DMULT
3639H (138810)

[DFAC]
[ARGJ

First argument
Second argument

REGISTERS ALTERED All

Condition: No Overflow

[DFACJ Result

Condition: Overflow

Control trensferred to the error handler.

37

6.3.4 Double Precision Division

DESCRIPTION

Divides the first argument by second argument, and
leaves the result in FAC.

NAME
ADDRESS
ENTRY

EXIT

DDIV
3691H (139690)

(DFAC]
(ARG]

First argument (Dividend)
Second argument (Divisor)

REGISTERS ALTERED All

Condition:

Condition:

No Overf_low

[DFAC] Result

Overflow or Divide by zero.

Control transferred to the error handler.

38

CHAPTER 7 Mathematical Functions

7.1 Power

DESCRIPTION

Calculates the formula v·x where Y is the base and xis
the exponent.

NAME

ADDRESS

ENTRY

EXIT

FPWR

3O5EH (157100)

First ergument.

[Bl
(CJ
[OJ
(El

Exponent
High order of Mantissa
Middle order of Mantissa
Low order of Mantissa

Second argument.

(F_AC) Base

Condition: No error

[FAC) Result

Condition:: Error

Control is trensferred to the Error Handler.

1 - Illegel Function Call::

Bese is negative end exponent is not en integer.

2 - Divide By Zero:

Base is Zero and exponent is negative.

3 - Overflow:

Number is out of reng_e.

39

7.2 EXP

DESCRIPTION

Compute the Natural Logarithm's base value.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS

Condition:

Condition:

EXP

3DADH (157890)

(FAC] - Argument

ALTERED All

No error

[FAC] Result

Error

The value in [FAC] exceeded 87.33655.
Control is transferred to the error
handler. ,

40

7.3 LOG

DESCRIPTION

Comput~ the Neturel Logarithm's base value.

NAME

ADDRESS

ENTRY

EXIT

LOG

2FFCH (122840D)

[FAC] Argument

REGISTERS ALTERED All

Condition:

Condition:

No error

[FACJ Result

Error

Illegal Function Cell:

The argument is negative ~r Zero.
Control is transferred to the error
handler.

41

7.4 SQR

DESCRIPTION

Compute the square root of e single precision number.

NAME

ADDRESS

ENTRY

EXIT

SQR

3D4DH (156930)

(FAC] Argument

REGISTERS ALTERED All

Condition:

Condition:

No error

(FAC] Result

Error

Illegal Function Call:

The argument is negative. Control is
transferred to the error handler.

42

7.5 SIN

DESCRIPTION

Computes the SI~ of en engle.
given in rediens.

The angle must be

NAME SIN

ADDRESS 3EC3H (16067D)

ENTRY (FAC] Argument

EXIT (FAC] Result

REGISTERS ALTERED All

43

7.6 COS

DESCRIPTION

Computes the COSINE of an engle.
given in radians.

cos

3EBDH (160610)

The angle must be

NAME

ADDRESS

ENTRY (FACJ

[FAC)

Argument

EXIT Result

REGISTERS ALTERED All

44

7.7 TAN

DESCRIPTION

Computes the tangent of an angle. The angle must be
given in radians.

NAME

ADDRESS

EXIT

TAN

3F5EH (16222D)

REGISTERS ALTERED All

Condition:

Condition:

No error

[FAC] Result

Overflow·

Control transferred to the error
handler.

45

7.8 ATN

DESCRIPTION

Computes arctangent of an angle. The
given in radians between -pi/2 and pi/2.

NAME ATN

ADDRESS 3F73H (162430)

ENTRY [FAC] Argument

EXIT [FACJ Result

REGISTERS ALTERED All

46

result is

7.9 RND

DESCRIPTION

Generates a random number between 0 and 1.

NAME RND

ADDRESS 3E4AH (159460)

ENTRY (FAC] (0 A new sequence of random
number is started

(FAC]=0 The last random number
generated is returned

(FAC])0 Next random number
generated is returned

EXIT
(FAC] Result

REGISTERS ALTERED All

47

CHAPTER

CHAPTER

0-lAPTER

DESCRIPTION OF BASIC PROGRAM FILE HANDLING ROUTINES

1.

2.
2.1
2.2

Overview

How to know the information of BASIC file
Procedure to know the info~mation of BASIC til0
Sample program

3. Saving a BASIC program in RAM as " • BA" 1' 5. le
~-1 Procedure to save BASIC program
3.2 Sample program

t~. Subroutine for loading end saving
4.1 SRCBAS
4.2 SCNEMP
4.3 LDIRSS
4.4 SETNAM
4.5 LINKER
4.6 LINKERl
4.7 MAKBAS
4.8 RUNC
4.9 CHKREG
4.10 REST00
4.11 MAKBAT
4. 12 Variables

CHAPTER 1 OVERVIEW

This document has been prepared to provide information about
the BASIC binary program file (". BA" 1=i1es) handling. Th-.1

documentation is divided into three parts, method to obtain in­
formation about a certain BASIC program file (such as address or
the file in memory, length of the program, and so on), saving a
port ion of memory as a 8AS IC program file and mi scel l aneou,;
routines used for BASIC program file handling.

S i m i l a r to other ROM rout in es , i t i s t 1·1 e Pro gr' d rn rn l';' r' ' ·,
responsibility to make special error handling routines to prevent
control ·from going back to the ROM error handler. For deta.i led
information of the error handling, refer to Chapter XX,
"Description of the ROM routines in the PC-8300"

CHAPTER 2 BASIC FILE SET-UP

2. 1 f:lrocedure to Know The Information of BASIC ,= i l e'!

1. Set Up File Name
[FILNAM] <--- 1st character in the file name

[FILNAM+5]
[FILNAM+6]
[FILNAM+7]
[FILNAM+8]

<--- 6th character in the file name
<--- "B"
<--- "A"
<---

2. Search For The File

Search for the file we want to know the information of

and get the starting address of the text. If the fil0
does not exists,transter control to the error handler.

CALL SRCBAS
JZ FILNF

3. Get Ending Address

CALL LINKER

4. Compute Length·

Search for the file
;If it does not exists,return

"File Not Found" error.

2.2 Sample Program

Load the BASIC program file whose name is "SAMPLE.BA"
I~ RUN flag is on,
At exit, (DE]

start execution
start address
Length [HL]

LOAD:
LXI
L.XI
LXI
CALL
LXI
MVI
INX
MVI
INX
MVI
CALL

JZ

PUSH
CALL

POP
MOV
SUB
MOY
MOV
SBB
MOV
INX
RET

FILNF:

MYFILE:
DB

H,MYFILE
D,FILNAM
B,0006D
LOIRSB
H,FILNAM+6
M, "8"
H
M, "A"
H
M, " "
SRCBAS

FIL.NF

D
LINKER1

D
A,L
E
L,A
A,H
D
H,A
H

"SAMPLE"

Set UP file name to FIL.NAM

And extension

Search the file
Start address is hold in DE
If do not exists, "file not
found" error
Save start address of BASIC file
Get end address of BASIC file
into HL
Get start address
Compute length
(HL:=HL-DE+l)

All done

File not found error
Put your error handling routin8
here

Name of the file to be load

CHAPTER ,3 SAVING A BASIC PROGRAM IN RAM AS A ".BA" FILE

In this chapter, the method to save a BASIC pro•;:;n~.:.~rn thi:1t
resides in memory into RAM file as a ".BA" file is described. The
Program should be written in intermediate language. The routines
described later in this chapter save the contents of a specit'ied
portion of memory exactly as they are, just appending some con­
trol information. The control information consists of two
words,load address and length.

Note current non-registered program is lost.

3.1 Procedure To Save A BASIC Program

To save a BASIC program in memory as a ".8A" file, follot,-i
the steps below. The address of the individual routines used in
this procedure will be described later in this chapter.

Step 1

Load a BASIC program in RAM as a non-registered program

1. Reset all of the variables, and update some pointers
2. Mak~ the largest hole possible before the ASCII files
3. Update some pointers
4. Transfer the program
5. Delete the excess space, and update some pointers

Step 2

Save the program as a ".BA" file

1. Set up the file name

Set up the file name in FILNAM, this is the same step
used to open an ASCII file except the extension should
be "BA" in the case of BASIC program save.Body of the
file name (ie: string that precedes the extension)
should be less than or equal to 6 characters long. It
it is less than 6 characters long,the rest should be
padded with spaces (20H).

[FILNAM]

[FILNAM+5]
[FILNAM+6]
[FILNAM+7]
[FILNAM+8]

<--- 1st character of the file name

<--- 6th character of the tile name
<--- "B"
<~-- "A"
(--- "

2. Check if the current program is regi~t~red or not

CALL CHKREG
JNZ FCERR

Is current program registered·?
Yes error

3. Search for a file with the same name

Search the directory for a file with the same name aH
the one that we want to save. If it exists, delete i t .
Obviously you can abort saving the new one, inste~d a t
deleting old one.

CALL SRCBAS

CNZ KILBAS

Search directory tor the tile
; whose name is in FILN AM

Kill old one it exist

4. Fix up directory structure

Re·fer to the " Descript.ion of ROM ,·out ines in PC-83fil0 A"
for detail of LNKFIL routine.

CALL LNKFIL ; Fix up directory structure

5. Search directory for empty (free) slot

To register the file, make sure there is free slot in
the directory and remember the location of the slot.If
no free . slot is available, abort sav~ng.

CALL SCNEMP search for empty slot
Save address of directory

6. Put file name into directory

Set file name and attributes into
gained by the SCNEMP cal 1. New Basic
just below the lowest "oo" file, at
Basic file storage area.

the directory slo t
f i 1 es are stored
the top of t h e

[HL] <--- Address of directory slot gained by SCNEMP
call

[DE] (--- Top address of BASIC text (ie: current
TXTTAB)

[A] (--- 80H
This is attribute for all ".BA" files

CALL SETNAM Put name into directory

7. Make the Basic File
CALL MAKBAS

Make
files)~ for the
with spaces (20H).

a hole at ASCTAB (the end of
null-basic-file, and pad

the
the

". BA"
hole

3.2 Sample Program

This sample program saves a BASIC program as a BASIC file
"SAMPLE.BA"and loads BASIC program in RAM as a
non-registered program. The information of the text is in
SOURCE and LENGTH

LOAD:
CALL SCCPTR
CALL LNKFIL
LHLD NULDIR+l
SHLO TXTTAB
LXI H,NULDIR
SHLD DIRPNT
LHLD VAL.TAB
SHLO ARYTAB
SHLD STREND
CALL MAKBAT

LHLD ASCTAB
DAD B
SHLD ASCTAB
LHLD ASCTAB
XCHG
LHLD LENGTH
SHLD TEMP
LHLD SOURCE

MOV B,H
MOV C,L
LHLD TXTTAB

LOADl:
LDAX B
INX B
MOV M,A
INX H
CALL COMPARE
JNC OMERR
PUSH H
LHLD TEMP
DCX H
MOV A,H
ORA L
JZ LOAD2
SHLD TEMP
POP H
JMP LOADl

LOAD2:
POP H
CALL LINKER

INX H
XCHG
LHLD ASCTAB
XCHG
CALL REST00

Get rid of pointers
Link all files

Reset variables

Make a possible largest hole at
current ; ASCTAB-1.
Update ASCTAB

Address of upper limit

Length of text

Get top address of text that is
to be loaded

Load from TXTTAB

Get a byte from source
and increment its pointer

Compare HL and DE

Is end of TEXT?

Yes, end of text
No, transfer next byte

Search an end of loaded program,
and get it in HL

Delete from HL to OE-1

; Save BASIC program in memory into RAM file.
; The file is named as "SAMPLE.BA"
SAVE:

RETURN:

FLERR:

LXI H,00.00H

DAD SP

SHLD MYSTACK
LXI H,FLERR

SHLD ERRJMF
LXI H,MYFILE
LXI D,FILNAM
LXI B,0006D
CALL LDIRSB

LXI H,FILNAM+6
MVI M, "8"
INX H
MVI M, "A"
INX H-
MVI M, "

CALL CHKREG
JNZ FCERR
CALL SRCBAS

CNZ KILBAS
CALL LNKFIL
CALL SCNEMP
SHLD DIRPNT
MVI A,100000008
XCHG
LHLD TXTTAB
XCHG
CALL SETNAM
CALL MAKBAS

LXI H,0000H
St-iLO ERRJMF
RET

LHLD MYSTACK

SPHL

;

Remember current stack pointer
v~lue preparing to error
In case of an error that
transfers
control to BASIC' s er'ror hancJling
routine,we need use .special
error trapping to gain
control back
from it, and reset stack pointer

Force control to come back to rne
in case of an error
Activate error trapping
Set UP file name to FIL.NAM

Copy 6 bytes from MYFILE into
FILNAM
Set up extension
It should always be " BA"

Extension field is 3 bytes long,
so pad with a space
Is current program registered?
Yes error
Search directory for a file of
same name as we want to create
now
If exist, delete old one
Fix up directory structure
Scan empty slot in directory

Is file attribute

TXTTAB holds loc where BASIC prog
program is saved
Set up directory
Make a room tor non reg program

All done
Reset error trapping

Error trap code. Control comes
here when directory is full a t
SCNEMF call.
Reset stack pointer
Put your own error handling code
here

FCERR:

OMERR:

COMPARE:

MYf"ILE:

MYSTACK:

SOURCE:

LENGTH:

TEMP:

CHAPTER 4

JMP RETURN

JMP RETURN

JMP RETURN

MOY A,H
SUB 0
RNZ
MOY A,L
SUB E
RET

DB "SAMPLE"

DS 02p

DW 0C000H

DW 0100H

DS 02D

Illegal function call error

Put your error handler here

Out of memory error
Put your error handler h(~r:~

; File name

Stack pointer value is stored
here to reset it in case of error

-Top address of text

Length of text

Temporary storage

SUBROUTINE FOR LOADING AND SAVING

4.1 SRCBAS

NAME
ADDRESS
ENTRY

EXIT

REGISTERS ALTERED
DESCRIPTION

SRCBAS
2~92H (8850D)
File name should be set up in
FILNAM
Same as SRCNAM (See "Description of
the ROM routines in PC-8300")
All

SRCBAS searches the directory for a ".BA"file.
The name of the ·file to be searched for should be
setup in FILNAM.

4..2 SCNEMP

NAME
ADDRESS
ENTRY
EXIT

REGISTERS ALTERED
DESCRIPTION

SCNEMP
22D3H (89150)
None
[HL] Address of empty

directory slot
[A], [BJ, [CJ, (HJ, [L]

SCNEMP is used to search the directory for an
empty slot. If an empty slot does not exist,the
control is transferred to BASIC's ROM routine.The
user program must be take care of this.

4.3 LDIRSB

NAME
ADDRESS
ENTRY

EXIT
REGISTERS ALTERED
DESCRIPTION

LDIRSB
6C78H (27768D)
[HL] Source address
[DE] Destination address
[BC] Length
None
All

Refer to Chapter XX, "Description of the ROM
routines in the PC-8300A" for detailed of the
LDIRSB routine.

4.4 SETNAM

NAME
ADDRESS
ENTRY

EXIT
REGISTERS ALTERED
DESCRIPTION

SETNAM
2435H (9269D)
[FILNAM]
[A]
[DE]
[HL]
None
[A], [BJ, [HJ, [L]

File name
Directory flag
Top address of file
Address of directory

SETNAMis used to put the filename and tile
attributes (directory flag) into a slot in direc­
tory. The slot is searched for by the SCNEMP call.

4.5 LINKER

NAME
ADDRESS
ENTRY

EXIT
REGISTERS ALTERED
DESCRIPTION

LINKER
0714.H (1812D)
The beg i nning of the BASI C text
should be set UP in TXTTAA
[HL] The end a ddress o f BASIC t e xt
All

The LINKER goes through the BASIC program stor~ge,
and fixes all of the l i nk pointers .

4..6 LINKERl

NAME
ADDRESS
ENTRY
EXIT

LINKERl
0718H (1816D)
[DE] The beginn i n g of E',ASIC t2 x.t
[HL] The end address 01' BASIC

text
REGISTERS ALTERED All.
DESCRIPTION

Same as LINKER.

4..7 MAK8AS

4..8 RUNC

NAME
ADDRESS
ENTRY
EXIT
REGISTERS ALTERED
DESCRIPTION

MAKBAS
23O0H (91680)
None
None
All

MAKBAS makes a hole at ASCTAB (end o t'' . BA" ti l es)
for null-basic-file,a~d pad 20H. (means e n d o f
BASIC text) at the hole .

NAME
ADDRESS
ENTRY
EXIT
REGISTERS ALTERED
DESCRIPTION

RUNC
3FF5H (16373D)
None
None
All including Stack Pointer

This routine initializes the v a r iable and a rra y
space by reseting ARYTAB (The end of s imple
variable space) and STREND (The end o f array
storage) It then initializes the stackpointer and
resets some flags (the data on stack i s l ost
except the return address ([SP],[SP+l]).

4. .9 CHKREG

NAME
ADDRESS

CHKREG
226AH (88100)

ENTRY
EXIT

4..10 REST00

NAME::
ADDRESS
ENTRY

None
Zero is clear, if the current
program is registered

REST00
28C8H (1044.30)
[HL] Start address
[DE]-1 End address

E:XI r
DESCRIPTION

None

4..11 MAKBAT

The REST00 fixes up files to delete the u:::;ele~s
area made by MAKBAT.

NAME
ADDRESS
Purpose
ENTRY

MAKBAT
6518H
Make a possible largest hole
Start address of the hole should b~
set UP in ASCTAB

EXIT
DESCRIPTION

[BC] holds its length

The MAKBAT make a possible largest hole at
[ASCTAB]. The size of the hole is calculate by
following formula. SIZE=[SP]-([STREND]+200D)

4.12 Variables

1. DIRPNT F979H (63865D)
Points to directory of current BASIC program

2. FILNAM FB78H (64-376D)
The filename is stored here.It is
first 6 bytes are used to store the

9 bytes long, the
body of the tile

name, and the rest for the extension.If the length of

the body and/or extension is less than the m21x imurn,
the space should be filled with 20H.

3. TXTTAB F45DH (62557D)
Pointer to the beginning of the text.

4. NL.ONLY F88CH (64396D)
Flag to show if the program is loading or not. Non~zero
if loading program.

5. ASCTAB FAElH (64225D)

Pointer to the start of the ASCII files

6. VALTAS FAESH (64.229D)
Pointer to the start of the simple vari~ble space

7. ARYTAB F--AE7H (64.231D)
Pointer to the beginning of the array table

8. STREND FAE9H (64.233D)
End of storage in use

9. NULDIR F870H (636000)
Directory for non-registered program
NULDIR+l holds its address

DESCRIPTION OF MACHINE CODE FILE HANDLING ROUTINES IN PC-8300A

CHAPTEf~

CHAPTER

CHAPTER

CHAPTER

1.

2.

Overview

Saving machine code program into RAM file
2.1 Procedure to save machine code program
2.2 Sample program

3. Loading a machine code file
3.1 Machine language program load routine
3.2 Procedure to load a machine code program

3.3 Sample program
4.. Subroutine for loading and saving
4.1 SRCCOM
4.2 SCNEMP
4.3 LDIRSB
4.4 SETNAM
4.. 5 MAKHOL
4.6 VARIABLES

CHAPTER 1 OVERVIEW

This document has been prepared to provide i nformation about
machin~ language files (''.CO" files) handling. The documentation
is divided into three parts: loading a machine code file into
memory, saving a machine code in memory into a RAM file and mis­
cellaneous routines used for machine code file handling.

S i m i l a r t o o t her ROM rout i n es, i t i s t he Pr o gr' a m m {~ r ' ,c;

responsibility to make special error handling to prevent cont rol
from going back to the ROM error handler. For detailed informa ­
tion of the er·ror handling, re ·fer to Chapter XX, "Des cr:L pti0n o ·f
the ROM routines in the PC-8300A".

CHAPTER 2 SAVING A MACHINE ·coDE PROGRAM INTO A RAM FILE

In this chapter, the method to save a machine code program
that resides in memory into a RAM file as a ". CO" ·file is
described. The object to be .saved does not need to be a machin,::­
code program, it can be a binary data file. The routines
described later in this chapter save the contents of a specified
portion of memory exactly as they are, just appending some con­
trol information.

The control information consists of three words; load
address, length and execution address. The contents of the filo
is always loaded back to the location where the contents (machine
code program) were located when saved. The load address in th,~
file contains the location. Note tha~ this is not the address of
the file itself.

2.1 Procedure to Save Machine Code Program

To save a machine code program in memory as a " . CO" file,
use the steps below. Address of individual routines used in this
chapter will be described later in this document.

1. Set Up The File Name
Set ~P the file name in FILNAM. This is the same ~tep

used to open an ASCII file except the. extension shou.ld be "co" in
the case of a machine code program save. Body the of file name
(ie: string that precedes the extension) should be less than or
equal to 6 characters long. If it is less than 6 characters long,
the res~ should be padded with spaces (20H).

FILNAM

FILNAM+5
FILNAM+6
FILNAM+7
FILNAM+8

<--- 1st character of file name

<--- 6th character of file name
<--- "C"
<~-- "O"
<--- ..

2. Set Up Parameter
Set the address of the machine code program, its length

and execution address.

BINADR
BINLEN
BINEXE

<--- Start address of binary data (2 bytes)
<--- Length of binary data (2 bytes)
<--- Execution address (2 bytes)

0 if this file needs not be executable
at IPL.

3. Fix up directory structure
Refer to Chapter XX, "Description of the ROM Routine in

the PC-8300A" for detail of LIKFIL routine .

CALL LNKFIL Fix up directory structure

4. Search For The File of the Same Name.

Search the directory for a file that has the same name
as the one that we want to save the machine code program. If it
exists, delete it. Obviously here you can abort saving the new
one, instead of deleting the old one.

CALL SRCCOM

CNZ KILCOM

Search directory for the file
whose name is FILNAM
Kill old one if exist

5. Search Directory for Empty (f'ree) Slot

To register the file, make .sure there is a free slot in
the directory and remember the location of the slot. If no free
slot is available, abort saving.

CALL SCNEMP Search for empty slot
Save address of directory

6. Allocate Room in RAM File

Allocate room in the RAM for the machine code program
and control information (location, length and execution address
of the machine code program). The length of the control ·informa­
tion is 6 bytes long (ie: 3 words). MAKHOL is the routine to al­
locate room in [BC] (length) at [HL]. Here [VARTAB] tells the
location where the room is to be allocated. The "co" file is
usually saved just under the address pointed to by VARTAB, so the
starting address of other files does not· need to be changed.
However it is a good idea to call LNKFIL after saving a new CO
file. When using MAKHOL be sure to adjust the pointer, BINTAB,
because MAKHOL changes BINTAB!

[HL]
[BC]
CALL
JC

<--- [VARTAB]
<--- [BINLEN]+6
MAKHOL
OMERR

7. Copy Control Information

Allocate room
Error if out of memory

Copy control informat1on to the top of the room allo­
cated in above step.

8. Copy Machine Code Program

Copy the machine code program into the directory slot ob­
tained by SCNEMP the call.·

[HL] <--- [BINADR] Address of machine code file to

.be saved
[DE] <--- (Top address of the room)+6

(BC] <--- (BINLEN]
CALL LDIRSB

;Location in RAM file where the
program is saved
Length of the program
Do block transfer

9. Reset 8If\JT AB

For BASIC bookkeeping

10. Put File Name into the Directory
Set file name and attributes into the directory s.tot

obtained by SCNEMP call.

[HL] <--- Address of directory slot gained by SCNEMP
call

(DE] <--- Address of room in RAM file. One used a t MAK­
HOL call

[A] (--- A0H
This is attribute for all ".CO" files

CALL SETNAM ; Put name into directory

11. Fi~ up dir~ctory -structure
CALL . LNKFIL

2.2 Sample Program to Make a New CO File

Make New CO File

Entry:

MAKHOL
LNKFIL

HEADLN
BINTAB

VARTAB

MAKECO:

[STRADR]
[LENGTH]
[EXECAD]
[HL]

EQU
EQU

EQU
EQU

EQU

MVI

MOV
PUSH
LHLD
LXI
DAD

MOV
MOV
LHLD

start address of CO file data
length of data
execution
directory
6C0AH
233AH

6
FAE3

FAES

A,10100000B

M,A
H
LENGTH
B,HEADLN
B

8,H
C,L
BINTAB

address
address for this CO file

Make room
make up directory
field

address

header length of co file
lowest address of exi st'. Lng
co file
lowest address of variable
table

Set directory flag as CO
file
register it
save directory address
get file length of new co

;.set header length
get total length of new CO
file ..
set length in [BC]

[HL] lowest address of
existing CO files

PUSH H
save current BINTAB

LHLD VAR TAB
[HL] just above highest
CO file

CALL MAKHOL
; try to make a hole

JC
jump if there isn't
enough room

XCHG

MEMFUL

;save the top address of the
hole

POP H
; recover BINTAB

SHLD BINTAB
adjust BINTAB

XCHG
restore TOP of holt~

POP D
[DE] directory address

INX D
advance to address field

MOV_ A,L
set start address

STAX D

INX 0
MOV A,H
STAX 0

To register the file name in the directory is omitted

XCHG
MVI B,HEADL.N
LXI H,STARAD

COPYHD:
MOV A,M
STAX D
INX D
INX H
DCR B
JNZ COPYHD
LHLD LENGTH
MOV B,H
MOV C,H
LHLD STARAD

COPYLP:
MOV A,M
STAX D
INX D
INX H
DCX B
MOV A,B
ORA C
JNZ COPYLP
CALL LNKFIL

ERROR HANDLING ROUTINE

MEMFUL:
Memory full error

DATA AREA

STARAD:
LENGTH:
EXECAD:

OS
DS
DS

END

2.21 Sample Program

2
2
2

[DE] top of vacant room
set header length
offset of header data

get header data
store it in file

end of header data?
copy 3 address as header
get data length
set length in [RCJ

[DE] destination address
(HL] source address

; ~OPY contents of file

count down
; end of data?

continue till end of data
update start addresses of

; other files in directory
area RET

This sample program saves 0800H bytes in memory from A000H
(40960D) as a machine code file "SAMPLE.CO"

Save machine code program in memory into RAM file
The program is assumed to start at A000H and 0800H bytes long.
The file is named as "SAMPLE.CO"

LXI H,0000H

DAD SP

; Remember Ct.Jrrent stack point
value
preparing to error
In case of an error that
transfers
control to BASIC's error handling
routine, we need use special
error
trapping to gain control b~ck

from it, and reset stack pointer
SHLD MYSTACK ;
LXI H,ERROR Force control to come back to me

SHLD ERRJMP
LXI H,MYFILE
LXI D,FILNAM
LXI B,0006D
CALL LDIRSB

LXI · H,FILNAM+6
MVI M, "C"
INX· H
MVI M, "O"
INX H
MVI M. " II

LXI H,MYBIPA

LXI D,BINADR

LXI B,0006D
CALL LDIRSB
CALL LNKFIL
CAL.L SRCCOM

CNZ KILCOM
CALL SCNEMP

PUSH H
LHLD BINTAB
PUSH H
LXI B,00060
LHLD BINLEN

PUSH H
DAD B

in case of an error
; Activate error trapping

Set up file name to FILNAM

;

Copy 6 bytes from MYFILE into
FILNAM
Set up extension
It ~hould always be "co"

Extension field is 3 bytes long,
so pad with a space
Set up addreas of machine code
program, length and execution
address into BINADR, BINLEN, and
BINEXE
Since BINADR,BINLEN and BINEXE
stay together

; Fix up directory structure
Search directory for a file of
same name as ~e want to creAte
now .
If exists, delete old one
Scan empty slot in -directory
where
our file name is out
Save the address
Save current BINTAB

Get length of machine code
program
Save it for future use
6 bytes tor control information

MOV B,H
MOV C,L
!._HLD VARTAB
SHLD TEMP
CNC MAKHOL

JC OMERR
XCHG
LXI H,BINADR

LXI 8,00060
CALL LDIRSB
LHLD BINADR

POP 8
CALL LDIRSB
POP H
SHLD BINTAB
POP H
MVI A,10100000B

XCHG
LHLD TEMP

XCHG
CALL SETNAM
CALL LNKFIL

RETURN:
LXI H,0000H
SHLD ERRJMP
RET

ERROR:
LHLO MYSTACK

SPHL

JMP RETURN

; Out of memory error
OMERR:

.JMP RETURN
MYFILE:

DB "SAMPLE"
MYBIPA:

ow 0A000H

Wh~re -1• i le is created
Save it for future use
Make room for control information
and machine code program
If out of memory was detect e d

Copy control inform~tion i n t o RAM
file. Note that control
information
must be stay together

Do COPY them
Where machine code program
resides
Pick up length of the program
Copy the program into RAM tile

Reset BINTAB
Recall address of directory slot
This is tile attribute code for
machine code file

temp hold location in RAM file
where machine code program is
saved (copied)

Set up directory
Fix up directory structure

All done
Reset error trapping

Error trapping code. Control
comes here when directory is 'l'ul l
at SCNEMP cal 1.
Reset stack pointer
Put your own error handling code
here

Put your own error handling code
here

File name

Address of machine code progrc1rn
to be saved

ow 0800H Its length
DW 0A000H Execute address

MYSTACK:
OS 02D Stack pointer value is stored

here
to reset it
in case of error

TEMP:
OS 02D Temporary storage

CHAPTER -3 Loading a Machine Code File

This chapter describes the procedure used to load a mac hine
code program file into memory. The machine code program cannot b ~
executed in the internal RAM. It should be loaded into memory Ht
exactly same location as the program was saved as the RAM.

3.1 Machine Language Program Load Routine

NAME
ADDRESS
ENTRY

EXIT
REGISTERS ALTERED
DESCRIPTION

RLOADM
28BBH (104.270)
File name .should be .set up in
FILNAM
None
[A] [BJ [C] [D] [E]

RLOADM is used to load a machine code program file
(RAM file) into memory at the location where the
program was located when saved. If the specified
file was not found,or.an out of memory error
occurred,the control is transferred to BASIC's ROM
Error routine.

3.2 Procedure to Load a Machine Code Program

1. Set up File Name
[FILNAM]

[FILNAM+5]
[FILNAM+6]
[FILNAM+7]
(FILNAM+8]

<--- 1st character in file name

<--- 6th charact.er in file name
<--- "C"
<--- "o"
<--- "

2. Load Machine Language Program File

Once the file name is set up, y61..1 can use the RLOADM
routine to load the machine code program file.

CALL RLOADM

3. Execute The Program (optional)

ecutable.
If the execute address is non zero,
Execute the program when necessary.

3.3 Sample Program

the prograrn

; Load the machine language file whose name is "SAMPLE.CO " .

].. ('
.c, ex ·-

I·f execution
LXI

DAO
SHLD
LXI
SHLD

LXI
LXI
LXI
CALL
LXI
MVI
INX
MVI
INX
MVI
CALL

LHLD

MOV
ORA

SHLD
CNZ

RETURN:
LXI
SHLD
RET

ERROR:
LHLD
SPHL
MOV
CPI
JZ

FILNF:

found" error

JMP
MYFILE:

DB
JMPT:

DB
ow

MYSTACK:

start address
H,0000H

SP
MYSTACK
H,ERROR
ERRJMP

H,MYFILE
D,FILNAM
B,0006D
LDIR$B
H,FILNAM+6
M, "C"
H
M, "O"
H
M, "
RLOADM

BINEXE

A,H
L

JMPT+l
JMPT

H,0000H
ERRJMP

MYSTACK

A,E
07D
OMERR

RETURN

"SAMPLE"

0C3H
0000H

is set, start execution.
get current stack pointer vnlue
and save it preparing in ca·,,e o·:'
error

Enable error trapping
Force control to come my error
handl(~r
Set up file name to FILNAM

And extension

Do load machine . the machine code
program file into it's real
address
Get execution address 01= the f .i. l ,)
(program)
See if it is zero
Zero indicates the program is not.
executable
Assume executable
If execution address is given
(nonzero), start execution

All done
Disable error trapping

Error trapping code
reset st~ck pointer
Check error code
Is this "Out of memory" error
Yes

Otherwise should be "Fi le not

Put your own error handler here

Name of the file to be load

Jump instruction
Where to jump. This is filled
1,,,1ith
execution address of the loaded
program.

OS 02D Stack pointer value is saved here

CHAPTER 4. SUBROUTINE FOR LOADING AND SAVING

•
4..1 SRCCOM

NAME
ADDRESS
ENTRY

EXIT
REGISTERS ALTERED
DESCRIPTION

SRCCOM
2272H (8818D)
File name should be set up in
FILNAM
Sarne as SCRNAM
All

The SRCCOM .searches the directory for cl".co"
file. The name of the file to be searched fur
should be already setup in FILNAM.

4..2 SCNEMP
NAME
ADDRESS
ENTRY
EXIT
REGISTERS ALTERED
DESCRIPTION

SCNEMP
22D.3H (8915D)
None
[HL] Address of empty directory
[A], [BJ, [CJ, [HJ, [L]

SCNEMP is used to search the directory for an
empty slot. If ~n empty directory slot does not
exist,control is transferred to BASIC's ROM Error ·
routine. Therefore the use~'s progr~m must be.take
care of this erro~.

4..3 LDIRSB
NAME
ADDRESS
ENTRY

EXIT
REGISTERS ALTERED
DESCRIPTION

LDIRSB
6C78H (27768D)
[HL] Source address
[OE] Destination adclress
[BC] Length
None
All

Refer to the chapter "Description of the ROM
routines in the PC-8300A" for details on the
LDIRSB routine.

4..4. SETNAM
NAME
ADDRESS

SETNAM
2435H (9269D)

ENTRY

EXIT

[FILNAM]
[A]
[DE]
[HL]

File name
Directory flag
Top address of tile
Address of directory

REGISTERS ALTERED
DESCRIPTION

None
[A][B][H][L]

4.. 5 MAK:-IOL

SETNAM is used to put a filename and attributes
(directory flag) into a slot in directory. Th,::
slot is searched for by the SCNEMP call.

NAME
ADDRESS
ENTRY

MAKHOL
6C0AH (27658D)
[HL] Start address
[BC] Length

EXIT Carry 1 if out of memory
REGISTERS ALTERED
DESCRIPTION

[A]., [D] , [E]

The MAKHOL routine is used to open a "hole" in the
RAM file and change a few pointers related to
RAM files. The purpose of the MAKHOL is to
allocate room in the RAM file to store the
machine code program.

4.6 Variables

1. BINADD F9C0H (639360)
Location of the machine language 0rogram to be saved,
or location where the machine code program is loaded:

2. BINLEN F9C2H (639380)
Length of the machine language program to be save d or
loaded, set by RLOADM after the program was load~d.

3. BINEXE F9C4H (639400)
Execution address of the machine program,
RLOADM .

4. FILNAM FB78H (643760_)

also se t t::, y

The filename is stored here.FILNAM is 9 bytes long,
the first 6 bytes are used to store t he body o f the
filename, and the rest are for extension.If the length
of the body and/or extension is less than the maximum,
the space character (20H) should be used.

5. VARTAB FA8BH (64.139D)
Pointer to the start of the simple variable space.
The location pointed to by VARTAB becomes the location
where the RAM f .ile fo~ machine code program i~ creat ed.

6. BINTAB FAE3H (64227D)
Pointer to the lowest address of the machine code
program file area.

CHAPTER

CHAPTER

CHAPTER

PC-8300A MISCELLANEOUS INFORMATION

1. Tape Formats
1. 1 ".BA " file
1. 2 " . co" tile
1. 3 ".DO" file
1. 4 Notes

2. 2nd ROM Information
2.1 ID of the 2ND ROM
2.21 Procedure for using the 2nd ROM
2.2 Method to use 1st ROM entry t r am 2nd ROM
2.3 Assignment of the Interrupt3
2.4 Routine for Using the 2ND ROM
2.5 Sequences in the 2nd ROM
2.6 Sample Code
2.7 Variables used in Sample Routine

3 Summary

CHAPTER 1 TAPE FORMAT

1.1 ".BA" file

+ -------+---- --+--------+-+----- ------- +-+--+--+--+--+--+--+-
!Carrier ! Space !Carrier

~ !
. 64 sec! 1 sec ! ~3 sec

+--------+-------+---- - -~-~---------- ---+-+--+- +--+--+--+--+-
!{-----Header----------)!(~ 10 times 03D -)!(-- File nam~ --)!

(ID of :BA file)

--------+------------ -------+-+------------------+---- ---~-
Carrier ic~rrier

! Body of BASIC text !
.2 sec .08 sec!

--------~ --- ----- ------- +-+--- - . -- -------• ------+-
(--- 9 times 00D --->

The first carrier in the header causes the motor to wait
that the cassette will rotate smoothly. The following
space and carrier are used for synchronizing the code.

The body of the filename should be less than or equal to 6
characters long. If it is less than 6 character·s long, the
excess should be packed with nulls (00D). The body ot the BASIC
text contains the intermediate codes from the top, pointed to
by TXTTAB or the address field in the directory to triple
000. (ie: end mark of BASIC text).

1.2 ".co" file

+--------------+--+--+--+--+--+--+-------------- -+------------+
Start addres:,; ! Length or'

! Header ! D0H ! ! of binary data ! binary dBtH!
(2 bytes) (2 bytes)

+--------+-----+ + +--+ -+--+--+-------- -------+------------+
!(--Filename-->!

+----------------+-+-+-+-+---------+-+--- ----- - -+-+--------+-
!Execution start ! Check ! C,:wrier·

address sum
(2 bytes) ! (1 byte) . 08 sec!

+----------------+ +-+-+-+--- -----+-+- -----------+-+--------+-
!(----->! !(--20 times(~0H)-->!
Copy of 4.bytes
from BINADR+2

+--------+-----+ ·--------+---- --+-+---- .------- ---+-+------- .+-
! Body of ! Check !Carrier

! Header ! 8DH ! machine !
codes

sum 1-
.08 se

+ : -- . ---------+------ < --+------ . +-+- ·--- ----------+-+--------+-
! (--20 times (00H)-->!

The header is the same as for the
the header is the ID for a ".co" file,
the data block.

".BA" The value D0H after
and 80H is the IO of

The body of the file name should be less than or equal to 6
characters long. If it is less than 6 characters long, the rest
should be padded with spaces, 20H.

The checksum after the execution start address is a check
sum of the file name, start address of binary data, length of
binary data, execution start address and next the 4bytes. The
next checksum is for the body of the machine codes. This checksum
is the sum's complement of 2~

1.:S ".DO" file

+--------+-----+--+--+--+- +--+--+-------------------- --------+-
!Copy of 10 byteq from BINADR

! Header ! 9CH !
(This data is ignor~e<:J)

+--------+-- --+--+--+--+--+--+--+-----------------------------+-
!(--Filename-->!

-+-------+-+------- -- -- +-+--------+
! Check ! ! Carrier

sum
! (lbyte) ! .08 sec!

-+----- -+-+----------- ·. + + -------+-
!(- 20 times 00H ->!

+--- -- ·-+-----+--- ------- +-------+-+----- -------+-+--------,--
! Body of ! Check ! lC~rrier

! Header ! BDH ! ASCII text ! sum
!(1byte)!

+--------+-----+------------+--- -- + +------- -----+-+--------+-
!(- 20 times 00H ->!

The header is the same as the ".BA" file. The value 9CH
after the header is the ID of a ".DO" file, and 8DH is the ID of
the data block.

.08

The body of filename should be less than or eaual to 6
characters long. If it is less than 6 characters long, tt,e rest
should be padded with spaces, 20H. The body of the ASCII text is
ASCII data from the top, pointed to by the address field
in the directory to lAH (ie: terminator of ASCII file).

The first check sum is a check sum of the filename and the
next 10 bytes. The next cr1eck surn is of the body of tr1e ASCII
data. The checksum is the sum's complement of 2.

1.4 Notes

The carrier is a high frequency sound, and the SPc.ice is a
low frequency sound.

The Basic Input/Output Routines for cassette are written
in Chapter XX, "Description of the ROM routine.s in the PC-8:~0(!1".
For further information please refer to Chapter XX, " Description
of
machine code file handling routines in PC-8300", and Chapter XX,
"Internal structure of PC-8300 file system".

CHAPTER 2 INFORMATION ON THE 2ND ROM

Before storing programs in the second ROM, there ar-e a lot
of matters which should be attended to and stored in the secor~
ROM, such a.s the interrupt jump tables and the power on/power off
sequences. One has to implement these tc1bl.es srnoot:h.l Y , o t he,·wi ~.,e
the PC-8300A can run away with the ROM bank switching. T h <:~ i'r.)l -­

lowing chapter contains the information needed to u t :i. l :i.z e the
second ROM bank.

2.1 ID of the 2nd ROM
Before using the second ROM, one must write the tol low:lng

information into the second ROM' s reserved memo r-y f.H' ,~a. The
r·eser·ved area is located from 0000H to 47H (710). Thi s area is
used for the second ROM's starting jump instruct.ion and ID code,
and the file name for the secorid ROM. The file name is di s played
like one of the RAM files on the MENU screen by the 1' irst ROM,
ROM #0. The following illustr~tion explains the special reserved
area in the second ROM.

Address
0000H

0001H
0002H

0024H
002CH
0034H
003CH
003FH
0040H
0041H
0042H
0043H
0044H

0047H
0048H

JMP ST.ART

RET
RET
RET
RET
RET
DB

DB

START:

II A ti
.. 8 ..

"2NDROM"

; The execution starts h~re
when 2nd ROM is selected

start address low
start address hi~h

Non-maskable interrupt
Barcode reader interrupt
UART interrupt
Interval timer interrupt
Reserved for RST interrupt

ID code for the 2nd ROM
Name of 2nd ROM
Indicates name in menu
display of RAM bank 1

2nd ROM's code

If this data is implemented correctly, the name,
will appear on the 1st ROM's menu screen. Therefore it is
switch to the 2nd ROM and execute the programs. To
programs in the 2nd ROM from the menu m.ode of ROM #0,
cursor to the 2nd ROM's file name on the sc~een and press
The system will then fall into the 2nd ROM programs .

"2NDROM",
easy to
start the
move the
return.

2.2 Method to use 1st ROM entry from 2nd ROM

If one wants to use the routines in the 1st ROM from the 2nd

ROM, one first has to create a special routine in a higr1er· rnernory
location of RAM (8000H-FFFFH) and implement it. That: r'()I.J I: irk 1,,1i 11
switch the ROM bank using the bank switching method. and CM~l the
routine in the 1st ROM . It is very important that the i.nt;err'1,ipt;:.;

be disabled before the ROM bank is changed. The tol .lrn.Jing sec-
t ions explain that one has to change the hook tabie 1'or tlw~ Pot.-.Jer·
clown interrupt thr.'lt was changed by the 2nd ROM to restc:-ir-t the
current process in the 2nd ROM program at the next power on. With
the hook table for the 2nd ROM, the power down in ROM tt:vl 1;; :L.1. l
cau:::;e a fatal error. The Power-off interrupt can not: b
prohibited. The contents of the roL~tine which will be Ci-.~ll eci rnu~,t
also be considered, because some routines in the 1'i.r· .st; ROM rnay
enable the interrupts in some par·t of their code, even if y ou
disable t~~e interrupts just before switching ROM bank~;. Ther'eforo~
all o·f the values in the hook table should be changed just b efore
calling the ROM bank switching routine.

The following program is a sample program which uses the 1st
ROM entry points from the 2nd . ROM.

2.21 Sample Program

This program will enable one to use the 1st ROM entry from
the second ROM. Some routines in the 1st ROM might enable
interrupts, so all of the interrupts in the hook table
should be replaced with a RET code. And they sh~uld be
restored after one is done calling the 1st ROM

1st ROM entry address Entry
Exit for return condition of the 1st ROM

< « SYSTEM define label »}
BNKCRL
STATUS

« (Main

ROM1ST:

EQU
EQU

Routine
ORG

SHLD
LXI
PUSH
LHL.D
PUSH
LHLD
PUSH
DI
IN
ANI
OUT

EI
POP
RET

0A1H
0A0H

> »
8000H

WORKH
H,RET2ND
H
ENTRY
H
WORKH
PSW

STATUS-
11111110B
BNKCRL

PSW

<<<Return from 1st ROM>>>
RET2ND:

< «
ENTRY:
WORKH:

PUSH
IN
ORI
OUT

POP
RET

SYSTEM Work
DW
DW
END

Note:

PSW
· STATUS

00000001B
BNKCRL

PSW

Area }} }

0000H
0000H

Bank control por·t
Bank status por~ t

; Routine must be between
8000H and FFFFH

; Save register Hl.
Return address trorn 1st ROM

P1...1sh stack top
1st ROM entry address
Push stack top
Restore HL
Save all registers
Disable interrupts

; Get current bank statu~_
Switch 1st ROM data setup

; Bank select
Now 0000H-7FFFH are 1st ROM

Enable interrupts

Jump 1st ROM entry

; Save all registers
; Get current bank status

Switch 2nd ROM dati, setup
; Bank select

Now 0000H-7FFFH

1st ROM entry address
HL register saving ar8a

At the first power on after setting the 2nd ROM, the PC-
8300A must be cold started (hold down the shift key, the ctrl
key, and the stop key, and press the reset button on the rear ot
the unit). Therefore all of the data which was stored in the
memory before setting of 2nd ROM will be destroyed.
2.3 Assignment of interrupts

The main purpose of the interrupts is smooth processing in

the Power Off Trap, reading data from the Bar-Code reader, com­
municating through the UART (RS-23ZC) and using the IntervRl
Timer. The interrupts are located at the Zero PAge Area.
The interrupts of the PC-8300 are assigned as follows.

The Interval timer interrupt has the highest priority, ancJ
the UART is second. The lowest priority interrupt is used for-· the
Barcode reader. The Interval timer has the highest priority
to be able to scan the keyboard and to count the auto-power off
counter for .saving the battery power. The f"C-8:500A' s autopo•,..i,~;"
off function is executed after 10 minutes has past since the last
key stroke was detected. This interval can be set by t:h,~ "POWER"
command in BASIC. The interval timer is used to count this
per-iod.

The interrupt table i~ loc~ted in the zero page area.

POWER OFF TRAP
BARCODE READER
UART
INTERVAL TIMER

NM!
RST 5.5

: RST 6.5
RST 7.5

: 0024-H (::,6D)
002CH (4-4-D)

: 0034H (52D)
003CH (600)

The interrupt hook table is in the RAM area.

F386H (62342D)
F389H (62345D)
F38CH (62348D)
F38FH (62351D)
F392H (62354D)

Power On Sequence
Barcode Reader Input Sequence
UART rnput Sequenee
Timer Sequence and Key Scann irig Sequence
Power Failure Sequence

1.. TRAP (NMI) Power off trap 24H (:360)

2.

This interrupt is non-maskable. When the power sw i tch is
turned oft', thi.s interrupt occurs. The fol lowing sequence l.: ,
the algorithm of this interrupt.

1: Ois~ble the interrupt
2: Call the hook table
3: Reset the key wait counter
4: Cancel the time counter
5: Output data to the auto power off port
6: HALT

The bit assignment for the Auto power off port i s as
follows.

PORT ADDRESS BAH [OUT] . (1860)

Bit 7
Bit 6
Bit 5

Bit 4

Bit 3
Bit 2

Bit 1
Bit 0

RST 5.5

81C55 port B

RTS output
OTR output
BELL

0: Ring Bell
1: Stop Bell

Auto Power Off
0: Off
1: On

DCD/RD select
Melody Control

0: On
j,: Off

LCD block select
LCD block select

Barcode reader 2CH (4t~o)

This interrupt is using RST 5. 5. If one does not use the
barcode reader program, this interrupt .should RETURN.

(ADDRESS F389H (62345D) with Disable Interrupt)

3. RST 6.5 UART

4.

(ADDRESS 6E00H (28160D) witt, Db.,able Interr·upt)

This interrupt is using RST 6. 5, it i:.5 caused by tr,,"~ Ul,:? r
(the Serial communication device 6402). Thit; inter-r-upt oc ­
curs when the data in the 6402 receive buffer is availabl~.

The algorithm of this interrupt is shown below.

PORT

1: Disable the interrupt
2: Call hook
3: Read data from the 6402
4: Read error status from the 6402
5: Xon/Xoff control check
6: SI/SO control check
7: Return to previous process

ADDRESS

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:

Bit 1:

Bit 0:

D8H (216D) [OUT]
(rs232c Command and status Port)

Not used
Not used
Not Used
Character length select #2
Cha~acter· length select #1
Parity inhibit

0: Parity generation check
1: Parity generation check, inhibit

Even parity enable
0: Odd parity
1: Even parity

Stop bit select
0: Stop bit 1 bit
1: Stop bit 1.5 bit

in case Data Length is 5
1: Stop bit 2 bit

in case Data Length is not 5

PORT ADDRESS C8H (200D) [OUT}
UART data I/0 port (6402 Data Register)

Bit 7 Data #7
Bit 6 Data #6
Bit 5 Data #5
Bit 4 Data ;1:4
Bit 3 Data #3
Bit 2 Data #2
Bit 1 Data ;1:1
Bit 0 Data #0

RST 7.5 Interval timer 3CH (60D)

This interrupt is using RST 7.5. The Interval Timer in-

terrupt (Timer device 1990) is also used for the key
ning.

In the system's initialization, the interval timer· i.;hich 1,,
con t r o J. l e d b y t he 1 9 9 0 , i .s s e t u p f o r 4. m s e <~ o n d rn o ,j e . T h c
port for the 1990 is illustrated below.

PORT ADDRESS A 89H (185D) [OUT]

r-3 it 7
Bit 6 .
Bit 5
Bit 4.
Bit 3
Bit 2
Bit 1
Bit 0

Calendar clock (1990) control port
Printer strobe, Keyboard strobe, LCD Chip select, and

Clock Data

Not used
Not used
Not used
Data output
Shift clock
Command output .#2
Command outp1...1t 1*1
Command output #0

Command :1;2 Command ttl
0

Commf3nd :l*0
1
1 0
1 1
1 1

0
1
0
1

t :t.rning
timing
ti rn i n9-
TE~-3

In the initialization routine, the command is set up as 05H,
which means 4.m second interval.

64
25
20
:Je

T he f o l 1 ow i n g s t e p i s t he a l go r i t h m f o r t h e i n t e r v a .l t :L rn 1cH·

sequence.

1: Disable the interrupt
2: Call hook table
3: Mask RST 7.5,RST 5.5
4.: Reverse cursor character for cursor blink
5: Key matrix scanning
6: Return to the inter~upted process

2.4. Some routine for using 2nd ROM
We prepare .,;ome routines in order to 1...1se 2nd ROM. When you

use the following routine with the 2nd ROM, the PC-8300 perfor
as follows.

+-----------------------------------~--------------------+

Menu mode of 1st ROM
+--- ----- --------- ------------------ -----------------+

: (-- Select 2nd ROM
V

+--------- --------- -- 2nd ROM--~-------~-------------+

V

+. -------------+ +------------- ---+
init re tt.H ' n

+---------------+ +----------------+
V

+ ------ -------- ------------------ -- --------------+
M~in routine o f 2nd ROM

+- ---------- ----------- ---------------------------+
:<-Turn off the power switch

V

+-------- ------+ +----------------+
PWFAIL PWON

+---------------+ +----------------+
V

+------------ -- ------------------------------ ---------+
Turn on the power switch·-->

+---- ---- ·------------------------------ - -------------+
Power off

+-------- - ---- ----- ------ - -------------------------+

2.5 SEQUENCES IN THE 2ND ROM

l. INIT

INIT sets up the SP (Stack Pointer), the power on tr,,=ip
.:1nd other interrupt routines. Then it copies l:h <~
bookkeeping area and the system area. Also ~ome
peripherals will be initialized by this routinr:-).

2. RETURN TO MENU

RETURN selects the standar.d RAM, RAM #0 and reset:-, the
power-off trap. It then jumps to the 1st ROM'::; rnenu
mode.

3. PWFAIL (Power Down)

When the power is turned oft, the control is tr-·ans-fered
to the routine. One must save all registers and
circumstances which should be saved in the stack. The
stack pointer is the most important register to resume
the current processing· on the next pow·~r-on.

------.,

The RAM bank number is always stored ·in TAM #0.
power on, the 1st ROM and RAM #0 are selected autom~ti­
cally. The bank switchihg procedure will be called in
the Power on sequence, if the number ot the RAM bank
was not identical to RAM #0. After changing the RAM
bank, all registers wi 11 be restored and the pending
procedure will be resumed, therefore in the stack, the
address of the process which was abandoned by the Power
down trap should be stored.

In addition, in order to resume the abandoned pr-·oc:es.s
with the 2nd ROM, one has to do a special power
on/power off sequence. In the power off trap, one
should set the .start routine of the .special power on
sequence which switches the ROM bank. It is recommended
that one uses the hook, F38FH. Usually, ti1e ·• Jump To
Power Fail Sequence" command is stored here. In the 2nd
ROM, however, one has to rewrite this hook table and
call the special power down routine here. In this
routine, the address of the special power on routine on
the stack. In this case, the fol lowing information
should be stacked before the "HLT" command i.s executed.

re.s1.,1ming address

starting address of
the ROM switching

routine

Contents of Pointers
(-- (:3 T AKS\/ J

(STAKSV] keeps the Stack Pointers value at "HLT"

4. PWON

Note

At initial power on, the initialization routine in ROM
#0 checks the RAM bank ~umber in BANK (F3DRH) when
power off was executed. When power off occurs in the
non-standard RAM bank, the RAM bank-switching routine
is called and switched. Then, the register contents
wi 11 · be restored. If the address 01" the Pt'ocess which
s.hould be resumed was stacked, tr,e address will be
picked up and executed. When the p~wer down wa~
detected in ROM #1, the address of the special ROM
switching routine ought to be stacked above the address
of the ~recess to be resumed. Therefore, after switch­
ing the ROM, the abandoned process will be resumed.

The following routine needs an internal work area. So,
one has to-secure any memory area by BASIC's clear
command, before 2nd ROM start. The HINIT in PWON
initializes only interrupt, 8155; the interval timer
and LCD. So, if one wants to use other hardware, please
put the initialization code in here (PWON).

2.6 SAMPLE CODE

Sample code to use 2nd ROM

BANK EQU F3DBH
ATIDSV EQU F383H
PWHOK EQU F386H
RST55 EQU F,389H
STAKSV EQU F9AEH
AUTOID EQU 9C0BH
SAVSTK EQU FAD0H
STATUS EQU A0H
BNKCRL EQU AlH
PWPORT EQU 88H
PORTB EQU BAH
FREE EQU ????H

< « Main Routine » >

ORG 0000H
START:

J-MP INIT

ORG 0024.H
JMP POWER

ORG 002CH
JMP BARCOD

ORG 0034.H
JMP UART

ORG 003CH
JMP TIMER.

ORG 004.0H
DB 'AB'
DB '2NDROM'

Bank save ar·ea

Power on hook table
Rst 5.5 hook table

Bank stati..i~~
Bank control
81C55 chip select
81C55 port B
You must set your RAM

free portion address,

; Restart 0

; Jump to.initialization routine
;when 2nd ROM ·is called from 1st

ROM' s menu m_ode
Non-maskable interrupt
Power off trap

RST 5.5
Barcode interrupt

RST 6.5
UART interrupt

Timer interrupt

ID code· for 2nd ROM
2nd ROM'.s IO

Filename displayed in menu

INIT:
LHLD SAVSTK
SPHL
CALL SETTRP

CALL HINIT
.JMP MAIN

MAIN:
; <<<Setup hook>>>

; Set stack pointer

; Set hook tor resume 2nd ROM's
programmed other routine into RAM

Hardw21re in :Lt :i. 1:1J. i 2~-,,t. ion
; Jump your main routine

; Set up the hook table tor the 2nd ROM
~-3[':TTRP:

[DE] (-
COPY:

MVI A,000000018
our BNKCRL
LXI H,DTBL
LXI 0,PWHOK
MVI B,TBLEND-DTBL
CALL COPY
LXI H,TBLHOK
LXI O,FREE
LXI B,HOKE-TBLHOK
CALL COPY
RET

[HL]

MOV A,M
STAX D

INX H
INX D
OCR B
JNZ COPY
RET

Select standard RAM
Select!
Set some codes into RAM
for power on sequence

return code table
; Free area of RAM portion

Set length

; Copy [BJ bytes
; Source:[HL]

Dest inat'ion: [DE J

The following code will be copied into RAM
portion for re-power on sequences
these parts are interrupt hook table

'· DTBL EQU $

MVI A,00000001B This code will be copied into RAM
OUT BNKCRL
JMP PWON

BANKI: OS 1
TBLEND EQU $

The following code will be copied
into the RAM portion for return to 1st ROM

TBLHOK
RETSB:

HOKE

RETURN:

EQU

XRA
OUT

.JMP
EQU

MVI
OUT
MVI
STA
LXI
SHLO
LXI
LXI
LXI
CALL

$

A
BNKCRL

0
$

A,00000001B
BNKCRL
A,000000006
BANK
H,0000H
ATIDSV
H,RTBL
D,PWHOK
B,RTBLE-RTBL
COPY

; Clear A
; Select 1st ROM ,'.:H'.i(j

standard RAM
; Return!

, Select standard RAM

Reset ATIDSV

Rewrite code table
Interrt..apt hock tab le :,,el:

Set length

JMP RETSB ; Return to 1st ROM'S menu

The following code will be copied
into the standard RAM portion

RTBL

RTBLE

; « <

PWON:

EQU $

RET
NOP
NOP
EI
RET
NOP
EQU $

POWER ON » >

CALL HINIT
LOA BANKI-DTBL
OUT BNKCRL
LHLO STAKSV
SPHL

POP PSW
POP B
POP D
POP H

Power on hook

RST 5.5 hook

; Initialization of hardware
Select old RAM bank

Restore stack pointer

If you do not want to resume, put
that any code for

Restore all register

RET Resume old program

PWFAIL:

NTPWFL :

PUSH PSW
IN PWPORT
ANA A
JM NTPWFL
POP PSW
DI
PUSl-1 H
PUSH D
PUSH B
PUSH PSW
LXI H,0000H
DAD SP
Sl-lLD STAKSV
MVI A,0FFH
STA PWRINT
IN STATUS

MOV B,A
MVI A,000000018
OUT BNKCRL
MOV A, B .
STA BANKI-DTBL
MVI A,000000018
OUT BNKCRL
MVI A,00H

STA BANK
LXI H,AUTOID
SHLD ATIDSV
IN PORTB
ORI 00010000B
OUT PORTB
HLT

POP PSW
RET

Read power down por t
Check
No power down

Disable interrupt
Save all register·s

Save stack
Reset interval tim~r
Set up for next power on
Save current RAM bank statu~ .

. ;when power on resume remember
this and select RAM bank

; Save it
Select standard RAM

Select!
; Resave old status

Select RAM banK 1

; Set up to come back to 2nd ROM
when next power on

Power off

<<< BARCODE READER INTERRUPT)))
BARCOD: RET

;(((UART INTERRUPT)))
UART: RET

; (((INTERVAL TIMER INTERRUPT)))
TIMER:

LDA PWRINT
OCR A
STA PWRINT
RET

<<< SYSTEM WORK AREA)))
PWRINT: DB 0FFH

END

Return soon

Return soon

Pick up timer value
Decrement!
Save it

Timer counter n * 1/256H2

2.7 Variables Used in this Sample Routine

1.

2.

3.

4.

5.

6.

ATIDSV F.383H (623380)
To resume operation or not

(Address to Jump to Resume)

BANK F3DBH (62427D)
The Bank status is saved here.

(Current Bank selected)

PWRHOK F386H (62342D)
Power on hook

(RST 00 Hook)

ROMSEL FE44H (65092D)
Holds the value output to IOCNT (System Control Port)

(Copy of Port 090 IOCNT)

SAVSTK FAD0H (64208D)
User can use this area {above [SAVSTK]) in the 2nd ROM
as the stack area (Save for SP used by Resume)

STAKSV F9AEH· (63918D):
Stack pointer save area during auto power off state

3.0 SUMMARY

To make a 2nd ROM program, one should take care of the following
manner.

A. INTERRUPT VECTOR

If one does not want to use interrupts, the entire interrupt
table should be set with "RET" code. It is st...1ggested that one U'.3,-:?

the interval timer interrupt, because·of saving the battery power·
by using the r.1uto power off function. The counter for' this ,3uto
power off function is counted by this inter-val timer· interrupt.
If not used, battery consumption may be higher than normal.

B. BANK of RAM

Program Counter·, po:Lnts
this bank swU;ching will

Do not switch the ROM bank when the PC,
to a routine in ROM. This is because
cause a fatal problem for the system,
of the files stored in RAM will be
taken in the stack area.

the wor·st case being, all
lost. Care should also be

C. PC-8300A BOOKKEEPING AREA

The bookkeeping area is very important for this system, so never
change that area without careful consideration~ For more informa­
tion see Chapter XX, "Bookkeeping Area".

0. POWER ON/OFF SEQUENCE

It is recommended that one use the power off interrupt to detect
the power down, using the real time interrupt service to poll the
power down signal.

If one is using the 1st ROM entry from the 2nd ROM, please take
care of the following points. All routines rewrite work area
sometimes, so if using the 1st ROM entry from the 2nd ROM without
understanding the routine's internal specification, the system
might crash. In addition, pay special attention to the interrupts
and stack area.

INTERNAL STRUCTURE OF THE PC-8300A RAM FILE SYSTEM
(

CHAPTER 1 Directory
1. l, Directory configuration
1. 2 Directory configuration per entry
1. 3 Bit assignment of directory flag
1. 4 Value of addre ss field

CHAPTER 2 File structure
2.1 File structure of machine language fil e
2.2 File structure of ASCII file
2.3 File Storage

CHAPTER 3 Bookkeeping Area
3.1 Par t I of the Bookkeeping Area
3. 10 Variables For The RAM File Handlin9 and Bas ic
3.11 Memory Map
3. 12 Description of the. Variables

CHAPTER 4. Part II of the Bookkeeping Area

CHAPTER 5 Part III of the Bookkeeping Area

CHAPTER 6 The File Control Block (FCB)

(CHAPTER 7 Notes

CHAPTER 8 Sample Program

CHAPTER 1 DIRECTORY

1.1 Directory Configuration
The directory area is

bookkeeping area. The top
registered Basic program is
been saved.

F84.FH (63567D)
F85AH (63578D)
F865H (63589D)
F870H(63600D)

F878H (63611D)

F886H (636220)

F891H (636330)

BASIC
TEXT
TELCOM

NULDIR

SCRDIR

EDTOIR

USRDIR

allocated in
address is

a program

the middle of
F84FH. A
which hc::1s

the
non­

no l:

Directory for program in ROM
Directory for program in ROM
Directory for program in ROM
Directory for non-register~ld

BASIC prograrn
Directory for SCRAP (used by

EDIT and TEXT)
Directory for temporary used

by EDIT
Directory for user-defined

files

(21 directories total)

F978H (638640) FFH Directory search stopper

FFFFH ------------------ <---
(65535D)

F977H ------------------
(63863D) Directory Bookkeeping

Area Area

F84FH ------------------
(63567D)

F380H ------------------ <---
(62336D)

1.2 Directory configuration per entry
The first six slots in the directory area are

initialized by the INIT routine at Cold Start.

Directory flag
Address field
File name

(1 byte)
(2 bytes)
(8 bytes)

The initialized values for the first six slots in the direc­
tory are shown below. The first three files are stored in ROM and
displayed on the menu screen. The nex~ three files are used for

{

t1idden files created in the RAM area. These hidden files will not
appear on the menu screen. The characteristics of the.se hidden
files are described below .

(Initialized data is stored in 6C8EH)

DB 10110008
DW Start address of BASIC
DB 'BASIC
DB 0

OB 10110008-
ow Start address of TEXT
OB 'TEXT
DB 0

DB 10110006
DW Start address of TELCOM
DB 'TELCOM •
DB 0

; for non-registered program

DB 10001000B
DW 0
DB 0
DB 'XXXXXXX'

; for Scrap file

DB 11001000B
DW 0
DB 0
DB •yyyyyyy•

. ; for EDIT command of BASIC

DB 01001000
ow 0
DB 0
DB •zzzzzzz•

1. 3 Bit assignment of directory flag
Bit 7 Master bit (1 means directory valid)
Bit 6 ASCII bit (1 means ASCII-TEXT file)
eit 5 Binary bit (1 means Machine language

file)
Bit 4 File in ROM (1 means file is in ROM)

Bit 3 Hidden file
Bit 2 IPL
Bit 1 RAM file
Bit 0 Internal

1.~ Value of address field
BASIC text

open
use

(1 means file is hidden)
(1 means IPL set)

flag
(Always set to 0
normally)

Address which TXTTAB must be
set

ASCII text Beginning address of tile
Machine language Beginning address of file
Machine language in ROM Entry address

The TXTTA8 in Basic shows the lowe">t byte of the file, the
first link pointer in the Basic program file.

--~.-

CHAPTER 2 File Structure

2.1 File Structure of Machine Language File
Start address 2 bytes
Length 2 bytes
Execution address 2 bytes
Machine code program

2.2 File Structure of ASCII File
ASCII text
lAH (End of TEXT) 1 byte

2.3 File Storage
The files in the internal RAM are stored in a fixed or ­
der. The Basic files ("BAw) are stored at the bottom of
the RAM · area, near 8000H. When a new Basic program is
stored is wi 11 be placed at the top location of the
Basic files allocated space (at the next lowest address
after the Document files). The "DO'' files (ASCII files
with the suffix ".DO") are allocated above the BA
files. Machine Language files ("co" files) are ,_;,aved
above the DO files, near FFFFH. The following illustra­
tion shows the order in which files are saved.

FFFFH
·Bookkeeping

Area

lFree Area and
Data Area

Machine
Language

I
. I

I
I

Area (CO):

ASCII
Document

Area (DO):

: Non-registered
Program

Basic
File

Area (BA):

------------------~-
A new BA file is created above the old BA files. A new DO file is
stored below the lowest DO file, just above the SA files. A new
CO file is made just above the CO files, just below the address
which is pointed to by VARTAB. The non-registered BA file is
created between the BA files and the DO files.

CHAPTER · 3 BOOKKEEPING AREA

The bookkeeping area is located at the top of the RAM area.

The area is divided into 3 parts. The first part, the lowest part
from F380H to FBBFH, includes the pointers and flags for RAM file
handling. Also many of the Basic interpreter's flags, pointer ::,
and temporary data is stored here. The Directory Area is included
here.

The second part, FBC0H to FE3FH, is used for the line buffer
of the LCD display. Basic also uses this area in the Screen
Editor function.The concept of this line buffer is different from
the VRAM in traditional desk top personal computers. Only the
character codes are stored in this buffer. There is no attribute
data. The attribute data is stored in another table (see the ex ­
planation of the LCD driver).

The third part, FE40H to FFFFH, is reserved by the BIOS. The
.switches and data storage for the. RS-232C, Key Board and other
I/O drivers are stored here.

FFFFH ----------------
(65535D)

: Part III

FE40H ----------------
(650880)

FBC0H
(64320D)

: Part II

I
I

: Part I

F380H ----------------
(62336D)

Bookkeeping Area

BIOS's data

LCD Buffer

Basie's date
File Handling Data·
Directory

3.1 PART I of the·BOOKKEEPING AREA

3.10 VARIABLES For the RAM File Handling and Basic

Many important pointers are stored in this area for RAM file
handling. When some of the pointers are mishandled in your-·
routines, all RAM ~files might be deleted at the next operation or
the standard ROM (ROM #0). The built-in programs assume that the
pointers point to the correct addresses. So if a pointer which
should point to the lowest address of the DO files, points one
byte smaller than it should, text might not invoke any 00 tiles.
Make sure that the pointers contain the correct values at n.L .:.

times.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

ARYTAB FAE7H (64231D)
Pointer to the beginning of the array table

ASCTAB FAElH (64225D)
Pointer to the start of the ASCII fi-les

BINTAB FAE3H (64227D)
Pointer to the start of the binary files

BOTTOM F9B0H (63920D)
Bottom address of RAM

DIRPNT F979H (63865D)
Pointer to the directory of the curr~nt Basic program

DIRTBL F84FH (63567D)
Points to the beginning of the Basic ROM program

EDTDIR F886H (636220)
Directory entry for EDIT in Basic

FILTAB FB63H (64355D)
Pointer to the address of the file data

FRETOP FABFH (64191D)
Top of the string free space

FSIDSV F380H (62336D)
First power on or not, to determine a Cold Start
situation (ie, address to jump to on first power up)

HIMEM F384H (62340D)
Highest memory available to BASIC (ie:same RS CLEAR
command's 2nd parameter)

MEMSIZ FA9AH (64154D)
Highest location in memory

13. NULBUF FB67H (64.359D)
Pointer to the address of file buffer #0@

14.. NULDIR F870H (63600D)
Directory entry for a non-registered Basic program

15. SCRDIR F87BH (63611D)
Directory entry for scrap file

16. STKTOP F4.59H (62553D)
Top location to use for the stack

17. STREND FAE9H (64.233D)
End of storage in use

18. TXTEND FA88H (64.136D)
End of the current Basic program

19. TXTTAB F4.5DH (62557D)
Pointer to the beginning of the Basic text

20. USRDIR F891H (63633D)
Directory for the user's files. Points to the first
user directory entry.

21. VARTAB FAE5H (64.:229D)
Pointer t6 the start of simpl• variable space'

3.11 MEMORY MAP

(BOTTOM)--->
(BOTTOM+l)->

F981ZlH+

(TXTTAB)--->
FA5Di-i

(TXTEND)--->
FA88li

(NULDIR+l)->
F870H+

(ASCTAB)--->
FAElH

(SCRDIR+l)->
F87BH

(EDTDIR+l)->
F886H+

(BINTAB)---)
FAE3H

(VARTAB)--->
FAE5H

(ARYTAB)--->
FAE7H

(STREND)--->
FAE9H

(SP)------->
(STKTOP)--->

F4.59H
(FRETOP)--->

FABFH
(MEMSIZ)--->

FA9AH
(FIL TAB)---)

FB63H
(NULBUF)--->

(HIMEM)---->
F384.H

(FSIDSV)--->
F380H

I-----------------------1 812100H
I-- - --- - ---- ------I
I .BA files I
I I
I Current BASIC text I
I I
I .BA files I
I - .. I
I Non registered BASIC I
I text T
I I
I .DO files I
I I
I SCRAP I
I Contents of Paste buf.I
I I
I Edit Area for Basic I
I I
I .CO files I
I I
I Simple var. I
I I
I Array data I
I I
I Free area I
I I
I Stack area I
I : I
I String (Free area) I
I I
I String (Used area) I
I I
I (2 Bytes) I
I I
I File control block I
I I
I Null Buffer I
I (File #0) I
I I
I FCB I
I (#1 -- #n) I
I I
I User's machine lang. I
I area I
I I
I Disk code I
I I
I Bookkeeping I
I---------------- ---I FFFFH

3.12 Descriptions of the Variables

1. ARYTAB

2.

3.

ADDRESS
SIZE
PURPOSE

FAE'.7H (64.231D)
2 bytes

Pointer to the beginning of the array
table

The Array Table is al located just above the Var-·iable
Table. This points to the beginning address of this Ar­
ray Table.

ASCTAB
ADDRESS FAE1H (64.225D)
SIZE 2 bytes
PURPOSE Pointer to the start of the ASCII files
This pointer Points to the first byte of the first ·oo·
(ASCII) file.

BINTAB
ADDRESS
SIZE
PURPOSE

FAE3H (64.227D)
2 bytes

Pointer to the start of the Command
files

The lowest address of the first "co" file is kept here.

4.. BOTTOM.
ADDRESS
SIZE ..
PURPOSE.

F9B0H (63920D)
2 bytes
The bottom address of RAM

The lowest available RAM address is saved here. One can
easily know how many RAM chips have been installed in a
RAM bank by checking this pointer.

5. DIRPNT
ADDRESS
SIZE
PURPOSE

F979H (63865D)
2 bytes
Pointer to the directory of the current
Basic program.

6. DIRTBL
ADDRESS
SIZE

F84FH (63567D)
33 bytes

PURPOSE Directory for the programs in the ROM
The names and pointers for the programs in ROM (Basic,
Text, and Telcom) are stored in DIRTBL. If these
programs are not being used, this area may be used by
the user's programs. This area will be kept until a
"COLD START" is invoked.

7. EDTDIR
ADDRESS F886H (63622D)
SIZE 11 bytes
PURPOSE Directory for EDIT in Basic
The EDIT command in Basic creates a temporary "DO"
file. This slot is used for this file.

8. FILTAB
ADDRESS
SIZE
PURPOSE

FB63H (64355D)
2 bytes
Points to the address of the file data

This pointer points to the starting address of the file
data area. The file data area consists of the FCB
address. If the "MAXFILES" command in Basic was not
executed after a "COLD START", this table has 4 bytes.
The first 2 bytes point to the NULL files buffer
(NULBUF points to the same address). The second 2 bytes
point to the #1 file's FCB address.

9. FRETOP

10.

11.

ADDRESS FABFH (64.191D)
SIZE 2 bytes
PURPOSE The top of the free string space
The highest address (closest to FFFFH) of the free
string area is kept in this pointer. The lowest address
is kept by STKTOP+l.

FSIDSV
ADDRESS F380H (62336D)
SIZE 2 bytes
PURPOSE Check if first ~ower on or not
.If FSIDSV is not identical to FRSTID (8A4DH), the
initialization routine falls into the "COLD StART"
routine~ If cold start occurs, all of the data files in
the PC-8300A are cleared. The "COLD $TART" routine sets
FRSTID to this address after the initialization is
done. This ID value may not be changed.

HIMEM
ADDRESS
SIZE

F384H (6234.00)
2 bytes

PURPOSE Highest memory available for Basic
This pointer holds the highest memory address available
for Basic. The area between this address and F380H is
reserved for machin.e language files or the user's
special working area. No standard program will break
the data in this area except the POKE statement in

Basic. The POKE statement can write to anywhere in the
RAM, so care should be taken when selecting an address
for the POKE statement to store a machine l~nguage
program or character data into the RAM area. The HIMEM
can be changed by the second parameter of the CLEAR
statement in Basic. Please refer to the PC-8300A Basic
Reference Manua~ for more information on the CLEAR And
POKE statements.

12. MEMSIZ
ADDRESS
SIZE

FA9AH (64154D)
2 bytes

13.

PURPOSE The highest location in memory
This pointer points to the top of the string space. The
area between the MEMSIZ and FRETOP+l is called ''Used
String Space", and the area between the FRETOP and
STKTOP+l is "Free String Space".

NULBUF
ADDRESS
SIZE
PURPOSE

FB67H (64359D)
2 bytes
Points to the address of the file buffer

The buffer for file #0, sometimes called NULBUF, is
allocated just above the file data table, pointed to by
FILTAB.

14. NULDIR

15.

ADDRESS F870H (636000)
SIZE 11 bytes
PURPOSE Directory for non-registered programs
This area is kept for internal use. A non-registered
program is a Basic program which has been just typed
after selecting BASIC. This area points to the starting
address of the Basic program. Please refer to the
chapter on BASIC file handling.

SCRDIR
ADDRESS
SIZE

F87BH (63611D)
11 bytes

PURPOSE Directory for the Scrap Area
The TEXT editor is capable of the following four
functions, SELECT, CUT, COPY, and PASTE. This directory
is used as a temporary fLle storage for the Scrap from
TEXT. This file is created when some characters are
SELECTed and COPYed or CUT (please refer to the
PC-8300A User's Guide for more information on these
terms). This file is kept even if one exits from TEXT,
therefore the contents can be used in other programs

(ie, Basic or Telcom). If one CUTs or COPYs without
first SELECTing, the starting address points to
Control-Z, showing the Scrap file to be empty.

16. STKTOP
ADDRESS F459H (62553D)
SIZE 2 bytes
PURPOSE The top location to use for the stack
Initially STKTOP is set UP by the INIT routine in ROM
#), according to the memory size to allow for 256 bytes
of string space. This value can be changed by the CU-:Ar~
command's first argument. The difference between MEMSIZ
and STKTOP means the total string space. The 2 byte
space between MEMSIZ and FILTAB are kept for the "VAL"
function in Basic. The "VAL" function sets "0" at the
end of the strings, after evaluating the strings. This
two byte area prevents accidental over-write of the FCB
area Just above the FILTAB.

17. STREND
ADDRESS FAE9H (64233D)
SIZE 2 bytes
PURPOSE End of the storage in use
This pointer keeps the address just above the Array
Table. The area between this pointer and the stack
pointer can be used as the FREE area.

18. TXTEND
ADDRESS
SIZE
PURPOSE

19. TXTTAB
ADDRESS
SIZE
PURPOSE

20. USRDIR

FA88H (64136D)
2 bytes
The end of the Current Basic program

F45DH (62557D)
2 bytes
Pointer to the beginning of the current
Basic program

ADDRESS F891H (63633D)
SIZE 231 bytes
PURPOSE Directory for the user's files.
This area is used for the "BA" files, "DO" files and
"co" files which the user makes. Up to 21 files can be
registered. The end of the directory area is indicated
by FFH (Directory Search Stopper).

17. VARTA8
ADDRESS
SIZE

FAE5H (642290)
2 bytes

PURPOSE Pointer to the simple variable space
This pointer keeps the starting address of the Variable

Table area just above the "co" files.

CHAPTER 4 PART II of the BOOKKEEPING AREA

VRAM Area For The LCD

ADDRESS
SIZE

FBC0H (64448D)
640 bytes

Part II of the Bookkeeping area is used for the VRAM of the
LCD (Liquid Crystal Display): In this area, data is stored as the
ANSI ch~racter code (~efer to Appendix 4 of the PC-8300A Basic
Reference Manual). The LCD driver, installed just below the LCD
p~nel, receives this character code and displays it on the LCD. A
total of 320 characters (40 X 8) can be shown on the LCD panel,at
one time. Therefore only the second 320 bytes, . from FD00H to
FE3FH, are used for the VRAM. The first 320 bytes, FBD0H to
FCFFH, are used on).y when the TERM mode is selected in TELCOM.
The "PREV" function key in TEL COM' s TERM mode, shows the prev iou~;
screen from TERM (please refer to the PC-8300A Users Guide for
more information).

The data in the VRAM appears when the LCD driver is turned
on. Please refer to Chapter XX, for information on the control
sequence for the LCD mana9ement.

CHAPTER 5 PART III of the BOOKKEEPING AREA

Bookkeeping Area for the BIOS

ADDRESS
SIZE

FE4.0H to FFFFH (65088D - 65535D)
4.4.7 bytes

This area includes the data area for the RS-232C driver, the
buffers relevant to the Keyboard driver, and the working area for
the LCD driver. Refer to Chapter XX - XX for information on how
to use the peripheral drivers and the data in this area.

CHAPTER 6 THE FILE CONTROL BLOCK (FCB)

The variable FILTAB points to the lowest address of the file
control data area. FIL TAB points to the table of the starting
address of the FCB (the FCB Offset) if the file is opened.

Example FILTAB and FCB

FILTAB (FB63H) ---------> F16AH

Dump memory (in hexadecimal)

F16A 6E Fl 77 F2 ..

The first 2 bytes (F16EH) point to the starting address of
the FCB of ~0 file (NULL buffer). The second 2 bytes (F277H)
is the top address of the FCB tor file #1. These starting
addresses are called FCBOFF .(FCB offset address).

The FCB area for NUL and file #1 are allocated by the
INITIALIZE routine in ROM #0. The remainder of the Offset
for the FCB area is allocated by the Basic language command
MAXFILES (refer to the PC-8300A Basic Reference Manual for
more information).

The FCB consists of 9 bytes of parameter area and 256 bytes
of buffer area except for NU!_BUF. NULBUF consists of only
256 bytes of buffer area. The purpose and the size of the
parameters are listed below. Since the FCB can support a
Floppy Disk File, there exists some meaningless p~rameters
for RAM files. These parameters may be used for the users
own purposes.

(1) FL.MOD- Null file mode for Open

ADDRESS
SIZE
PURPOSE

FCBOFF+0
l byte

The FL.MOD is the file mode of the FCB. If this byte is
not set, this FCB is not used in Basic. If one obey ·;
the Basic rules, you have to set a non-zero value here
when you open a file.

1 INPUT only
2 OUTPUT only
8 APPEND only

(2) FL.FCA- First cluster allocated

ADDRESS FCBOFF+l

SIZE
PURPOSE

1 byte

The first cluster is allocated to a file. In the RAM
file handling, this parameter has no meaning.

(3) FL.LCA- Last cluster accessed

ADDRESS
SIZE
PURPOSE

FC80FF+2
1 byte

The last cluster is accessed. For the RAM file open,
this byte and the next are used for the storage of the
Directory address of that RAM file.

(4) FL.LSA~ Last sector accessed

ADDRESS
SIZE
PURPOSE

FCBOFF+3
1 byte

The last sector accessed. For the RAM file open, this
and the previous byte are used for the storage of the
Directory address of that RAM file.

(5) FL.OSK- Na~e of disk drive on which file is opened

ADDRESS
SIZE
PURPOSE

FCBOFF+4.
1 byte

Disk number of the file or Device ID. The table listed
below is the D~vice ID table in the PC-8300A.

DEVICE NAME

LCD
CRT
CAS
COM
WAND
LPT
RAM

ID NUMBER

FFH
FEH
FDH
FCH
FBH
FAH
F9H

(The CRT and WAND devices are optional I/0)

(6) FL.SLB- Size of last buffer read

ADDRESS
SIZE
PURPOSE

FC80FF+5
l byte

The size of the last buffer read.
(7) FL.BPS- Current buffer position

ADDRESS
SIZE
PURPOSE

FCBOFF+6
1 byte

The position in the buffer for both PRINT and INPUT -

with the file#. One of the most important parameters
in the FCB.

(8) FL.FLG- Attribute flag for this file

ADDRESS
SIZE
PURPOSE

FCBOFF+7
1 byte

This byte and the next byte are used for the offset
address of the RAM file which is currently opened. For
example, in the "INPUT" mode file, this offset address
is advanced by 256 bytes when the block-read command
reads 256 bytes from the file into the buffer in the
FCB. In reading or writing to the RAM file ("DO~ file),
the starting address and this offset show the next byte
to be read or written.

(9) FL.OPS- Output position for tabs and commas

ADDRESS
SIZE
PURPOSE

FCBOFF+8
1 byte

The high byte of the offset address for the RAM file.

(10) FL.BUF- Start of sector buffer (256 Bytes)

ADDRESS
SIZE
PURPOSE

FCBOFF+9
256 bytes

Buffer for the file.

CHAPTER 7 NOTES

When manipulating RAM files without using the Basic' s ROM
routines, please note the following things, or the files may be
broken.

1. Update the pointers (ASCTAB, BINTAB, STREND, etc.) if
necessary.

2. Update the address data in the directory, if necessary.

3. Check for out of memory error

4. Set the directory correctly, when create new file.

5. Do not create more the 21 files!

CHAPTER 6
Sample program

Procedure to create new
1. Scan empty directory
2. Check out of memory
3. Make hole where new
4. Store ASCII text at
5. Update pointer'.,,
6. Update address data
7. Set UP directory

" .DO" file

file should be stored
the hole

in directory

Create new 0 .DO" file without to use BASIC's ROM routine.
START:
; Scan empty directory

LXI H,USRDIR

LOOP:

FOUND:

LXI B,0011D

MOV
CPI
JZ

ANI

JZ

A,M
0FFH
FLERR

80H

FOUND

DAD 8
JMP LOOP

SHLD TEMP
Check out of memory error

Is beginning address of user's
directory
Is length of directory

Get directory flag
Is end of directory
Yes, empty directory does not
exist
Check master bit (ie: Is the
directory in use)
Found empty directory. ·Make HL to
point next directory

Check next directory

Store address of empty directory

(ie: Check current SP is greater than the value that sum of
new (STREND) and 2000. Where SP less than that, it is not
possible that to create new filew)

LHLD STREND Compute new (STREND)
XCHG
LHLD LENGTH
DAD D
LXI B,0200D add 200 to it
DAD B
XCHG
LXI H,0000H
DAD SP Compute SP and it
MOV A,H
SUB D
JC OMERR
JNZ OK
MOV A,L
SUB E
JC OMERR

; Make hole at ASCTAB for new file that we want to create. (ie:
block transfer; ". DO" files, ". CO" files, simple var and ar­

rays.)

OK:
LHLD STREND
DCX H
PUSH H
XCHG
LHLD LENGTH
DAD D
PUSH H
LHLD STREND

XCHG
LHLD ASCTAB
MOV A,E
SUB L
MOV C,A
MOV A,D
SBB H
MOV B,A
POP D
POP H
CALL LDDRSB

Copy the ASCII text
LHLD LENGTH
MOV 8,H
MOV C,L
LHLD ASCTAB

XCHG
LXI H,TEXT

CALL LDIRSB

Save source address

Save destination address
Compute length of memory area
that will be
transfered. (Length=[STREND]
-[ASCTA8])

Block transfer
into the hole

Get len~th of new file

. ;
;Get beginning address where new

file should be stored

Get beginning address where
ASCII text is stored
Block transfer the text

Update pointers
(BINTAB,VARTAB,ARYTAB,STREND)

Update

LHLD LENGTH Get length of new file
XCHG
LHLD BINTAB
DAD D
SHLD BINTAB
LHLD VARTAB
DAD D
SHLD VARTAB
LHLD ARYTAB
DAD D
SHLD ARYTAB
LHLD STREND
DAD D
SHLD STREND

Pointers of ASCII
LHLD LENGTH
XCHG
LXI H,NULDIR

LXI B,0011D

Update BINTAB

Update VARTAB

Update ARYTAB

Update STREND

file and machine language file
Get length of new file

Get beginning address of RAM
file's directory

UPP01:
MOV A,M
CPI 0FFH
JZ ENDFIL
ANI 111100008
CPI 110000008
JZ UPP02
CPI 1010012)008
JNZ UPP03

UPP02:
INX H

MOV A,E
ADD M

MOV M,A
INX H
MOV A,D
ADC M
MOV M,A
DCX H
DCX H

UPP03:
DAD B
JMP UPP01

. ; Set UP directory of new
ENDFIL:

LHLD TEMP
MVI A,110000008

MOV M,A
INX H
XCHG
LHLD ASCTAB
XCHG
MOV M,E
INX H
MOV M,D

·INX H
XCHG
LXI H,FILNAM

LXI 8,00080
CALL LDIRS8
RET

FLERR:

OMERR:

file

Get directory flag
Is end of directory

Is ASCII file in RAM?

Is machine language file?

Yes, ASCII file or machine
language file

; Update pointer of file
(ie: add length of new file to
old pointer)

Make HL to point next directory
Check next directory

G.et address of empty directory
Is directory flag meaning ASCII
file in RAM

Set address of new file

Set file name

·rs beginning address where file
name is stored
Is length of file name
All done

Filing limit error
Put your error handling routine

Out of memory error
Put your error handling routine

LENGTH:
DW

FILNAM:
DB

Tt::XT:

DB
08

TEMP:
DS

0006D

"SAMPLEDO"

"Hello "
lAH

02D

Is length of ASCII text

Is file name

Contents ot new ASCII file
as terminator of ASCII file

Temporary storage to s~ve address
of empty directory

PC-8300A BASIC INPUT/OUTPUT ROM ENTRY POINTS

Keyboard Driver

LCD Driver

Printer Drivers

RAM Bank Handlers

RAM File Handlers

Physical Cassette Drivers

Physical RS232C Drivers

Time Handlers

Sound Generator

Screen Editing

Error Handling

Miscellaneous Routines

1

CHAPTER 1 KEYBOARD DRIVER

1.1 CHSNS --- See it key is entered

Th,ci CHSNS check~ i .. i cr-,.c-1r ·,-:-1cter· i: ; ,..-·.,- .· nd y :t n keybn1:0wd , .. ;: .. :<.:\ ; .-.

CHSNS supports function keys and paste key.

f.ntry Nr.une

Input parameter

Output parameter

Registers altered

2

CHSNS

18.3Dl-i (6205D)

None

Zero=l if character is ready.
Zero=0 if no character i s

ready.

[A J and f lag·1

.... ,-~,

.I , ,..;'.., C:-,(;[0'.T --- r.;et ,.,, char'acter i'rom the keYbl)dr'<J

De .set~ :i. pt ion

The CHGET rer~ds a ch2~racter trorn
r u n c t i () n k e y s are supp or t e d (i e :
:-:. t r· .L r-1 a) ..

the keyboard. P;:istc ,.,,nr.i
expanded into cr-,ar,i•: t.- ._. ,.,

Tr,e CHGE:T also pertorms time-out checking. I-r :0\0c c ,, .1,:.::

time-out interval 1.:c:. gone, control directly goes to dU '>)

power down routine, which turns the machine down.

The time out error will occur if a key is not presse~ . [1

this tc:,kes place the processor will ini.tL:~ te t:r1e ,:•11.1tn 1·,r;:.,.it';-·

down routine,

Entry Name

c.c:ntry Address

Input parameter

Output parameter

Register altered

CHGET

174.0H (59650)

None

(A]=Character typed

[A] and flags

1.3 Sample program of CHGET

r ·ol lowing tiny program shows how to u2,e CHGET (,;,nd Cl!r'UT
which will appear later in this do<::ument, and di,~;play·~ d

character on LCD). The program is very simple, it 1-·c,:ads ,,

character from the keyboard and echoes it on l_CD. Tyr,,in9 d

C terminates the program and return to BASIC. The proqram
is assumed to be executed by the BASIC EXEC stateme nt.

The following sample program demonstrates the use of the
routine CHGET. The routine reads a character from t he
ke;/board and echos it to the LCD screen. The rout:ine •.,Ji. .L.L

perform this function until a Control-C is pressed.

3

E'. CHO:

f·'?,0·,:-id !<,.? ·;1bor1,~·d dn(i e cr 1oe.s a 11 charac c er:::,. on L. CU 1 ,n r i .\ ,'1

given

CALL CHGET

CF' T lj):',()

RZ
C,'l.LL. CHPlJT
.JMP ECHO

4

Get a c~1ar,:'lct ,:::,· t rorn the k "'' '/ t)U ,.},·ci

Result L; passes in C ,~. J
I s t r1 i '.'> a c?
Ye ~,. Retur·n to Sa .si(;;
Otherwise display it on L.CCJ.
Loop until C i:::. given

1.4 BREAKX --- Sense shitt+stop keys

De~.cr :i.pt ion

The BRE~AKX is ,_~secJ tc) sense shift arid stop keys:, .. .['f t)<:,th c~r·,_:. ::
(jepre,;; :;ed, the SREA:<X ret:ui"ns car,·1' 2>et. ~-Jotr::.: Lhc::1 i: :),~, :. 1c,
s-:,t·n~;es u--,e keyboard dir·ectory. CHGET and CH ~:31'JS wor--k , · . .l onk, r:9
at tt,e keyboard queue rather than seeing th,? keyboar·c:. ~,.,:,.
t he Y do not i,.; or K i t i n t err up t s h cJ v e be e n d i sat:, .!. e d . i : ; ,.,

Bf~ f: AK X , i n t urn • work .·3 a l ready . r he sh i t t + s t op 1. :; ii :. :; , :.

queued in the keyboard queue as a -C character if int~ .. r-rupt:-".
are enab.Led.

The 6Rt: AKX routine traps the "Shi ft" and "Stop" key:-.. _;_ r
both ar·e depressed the BREAKX routine returns a condl t i,)n n 1'

carry flag set. If interrupts are enabled the SHlf-T+~-n OP
key combination generate.s a CONTROl_-c.

********TEST********

Entry Name

Entry

Input parameter

Outpt,..1t parameter

Registers altered

5

BREAKX

72DFH (29407D)

None

Carry= 1 If shitt+stop have
been depressed.

Carry::::0 Shift+Stop ·not detected.

[A] and f lag:3

! ,CO OR IVERS

2-1 CHPUT --- Display a charActer on console

2. l .. 1

The CHPUT dir.;plays c1 character on the system co,,:-,n I c.
char,3cter is placed at t:he current cur3or posit; i on .

· ,- 1. -
I I J..,;,.

c L~ r· so r· f:) C) ~ .. t i. o 11 i s i r·, creme n t e d r1 'f t er t r1 <:."! c:; r1 ~~1 r· r,'.· ~ c~ t e: r·· 1 -~;

ciiSt)lr3Yed .. rhe curso·r po.~3ition m.~y be alti=:,r--ec..i vi.~ tr .. , .. . ~
"POSIT" routine or v:La An ESC cornrnand.

CHPUT parameter,:?.

Entry Name

Entry Address

Input parc1meter

Output parameter

Register altered

6

CHPUT

td63H (17251D)

[A]=Character to be dispJayed

None

A

~ -,

'2. l . 2

CHPUT accept s ESC commands and several control character s as
we·J.l ,, :5 normal printable chc:H"a::ict:0r.s. ;=oLlo•,,;i. n<;i \;: '.:3C c,) rnm.-c1 n ,:: ·,
,1,·P '..:;uppor t ed by CH PUT.

Tl~e 'I' o l .lowing clernons t r a t es the 1xse o t' ESC comrnanc:L.=. v .1. , ;
the "CHPUT" r outine.

:SCHPUT EQU 01:'i..:..~6:..-Sh
t':~ GlU 27 c:i
MVI A,ESC ;27 decimr.11,lb hex
CALL CHPUT

MVI A, " j II ;Clear the screen command
CALL CHPUT
END

7

E'.-3C j

E:>(: E
r: ~.3<: K
b~ ~; C :.r
r:-:s c [

ESC L

f:SC M
ESC y <YPOS) < xpos>

t:'.3C A
f~SC s
t~ ~:3 (: C
E:3C D
f.".':Sc H
E~3C p
ESC q

t::sc p

ESC Q

t~SC T
ESC u
ESC V
ESC w

8

C Lear the ·=-Ct'een
Clear the screen
Erase t o end at' Lin0
Ernse to end o·f sc1--een

Erase entire line
Insert a blank line
Delete current lin~
Loc,0·1te cursor to

((ypos>, <xpos>)
Move cursor up

Move c ursor do wn
Move cursor r .i.9ht
Move cursor lett
Move cursor Horn<.~

Enter reversed video mode
Escape from reversed vid~0

mode
Turn on the cursor
Turn off the cursor
Set sYstem line
Reset system line
Lock screen
Unlock screen

The "Set syst~rn line" and "Re:.::.et system line" C<irr1mtc.nr.l ':: ,x· ,,
t;.secj to di.sr_:ilay ·r1...tn(~t.i<)n keys ,3nd c3ny .system me .,;:;c~·.J,=':3 r:.)t1 i: 1-,;.;

bottorn line (:Le: "Memory tull" error message in TEXT mou~).
The "Set sy~:;tem 1 ine" command al lo<::ates the bL)t; :>w1 1. ~. w: .·:
a ::;yc.;tem di.spl~y .line. Thi~. l:l.ne :t.s not u::-, er:i tc·" : :·:··rq; , :

character display.

The "Set System Line" does not disPlAY the ·functior1 key

definition. The routine "DSPFNK" Must be used tn disPLAY
the tun ct ion keys. The "Reset ~;ys tern Line" doe~" nr.,t ,.,r ,'.i' • .

the function key line.
the "ERAFNK" routine.

To eras,:! the f1.,_ncti.on k,-•, t in, -, 11·-,. ,·

Note: Once the system 1 ine is set, the cursor c,,nnot ne
located on the system 1 ine. To write message on tt,(::· :;. y-,..,., ;;~1n

line, temporarily reset the system line during putting chc1r···
acter-s on it.

9

2.. L • <.i Control Characters

CHPUT accepts the ~allowing control characters.

07D 8eep

08D Si.½C!< space
090 Tab
10D Line f eed
110 Home
120 Clear the screen
130 Carriage return
270 Inv· c) k_e ESC cornrnc,nd
2:30 Move cur5or right
29D Move ,::,, r·sor left
,SvJO Move cursor UP

310 Move cursor down

10

~) .·2 D'.-3i'"'ic:l'.J:< --- Display 1'1 .mction key •;

Ue ~-;er i pt ion

The D'::iPFNK routine is used to display function k.ey::; c, n
sy.,_:; r;em .Line. It the .sy•;tem l .ine t,as not been enab.l. P.<j,

(Y:-:Pf'i\lK 21utomr:-1t i ca .l l y enab .Les the ~; y st em .1. :i. ne.

f::ntry Name OSF'FNK

Entry Addr·es. s 4.2E4.H (17124.D)

Non,~

None

f~e9i ,3ter altered All

11

2.3 Setting function key string

F'1..1nction Key definitions 2:w·i':i stored in the " <.:;y<-:,i:cm ~. ,- u,.-·.

Keening Area". 16 bytes are allocated for each function ke;
definition.

St rings must be 15 bytes lonq. Null fill the ~, t,-·tr,9 , i

definition i .s les.s than 15 bytes. The 1 6 th b/ ::,J o:
definition must be null character.

L,-:. Function Key S set in the following sample progr','.lrn .

1 .• <•

' ' •' -·

'.'°)f't string "COMMAND" to the function key 5 .
r::-NKSTr~ EQU 0F6A51-i

~:3ETFNK:
l_XI D,MYSTRG
LXI H, r=NKSTR+lo..1:5

MVI B, 16
MOVFNK:

LDAX D
MOV M,A
INX D
INX H.

ORA A

JZ FILNUL
DCR B
JNZ MOVFNK
DCX H

NUU_:

MVI M,00
RET

FILNUl_:
OCR B

RZ
MVI M,00
INX H
JMP FILNUL

MYSTRG:
DB 'COMMAND'

()[3 0vJ

12

; Function

; Where original is stor·ed
; Address ot ·function key S.

each functi o n key consist of

16 bytes
Length of an entry

Copy .a char act er

All character have been
copied?
Yes. F'ill the rest t)Y NULL~-,.
More room in entry·,'
Yes. Keep copying
Too long string
Force last character to be

Fill the rest of entry by
NULL::,
All done
Put a NUL.L

Keep tilling

String to be set to function
key 5
Terminator

2.4 ERAFNK --- Erase function key line

ti.:~"'.cript ion

The f:RAFNK routine is used to erase the system inc: hr1<J
t'e-::set the sy~;;tem line. n-ie ERAFNK routine may be u::,ed t,·,
er·ase function keys or any message previously d :I.sPlciveo ,:,n
t he ·,; 1/ s t em l i n e . T he ER AF N K rout i n e does no t ~ • .i n g .i r t~ r·,.:
system line has not been enabled.

f~ntry Name ERAPN:<

Entry Addr·es:.;; 4 2 C-".H (17091D)

Input parameter i\l(:,ne

Output Pcir-ameter None

Registers altered All

2.5 Sample program of DSPFNK a~d ERAFNK

The fol lowing sample program perf9rms the fol lowing ,,teps.
The routines "DSPFNK" and "ERAFNK" will be used.

1) Assign "Hello" to fun¢tion key 1.
2) Display all 5 function keys.
3) Wait form keyboard input.
4) Erase function key line.
5) Return to Basic

13

Sample program of OSPFNK and ERAFNK

L.X I D, FNKSTR

LXI H,HELLO
l_XI B, 0016
CALL LDIRSB

CALL DSPFNK
CALL CHGET
CALL ERAFNK

RET

HEl_LO:
DB 'Hello'

DB 0,0,0,0,(2)
DB 0,0,0,0,0
DB 0

14

Set "Hello" into tunct ·:. o;-;
k ey ~n
Where "Hello" .stored n,:-,1,J
Length of the ··c;tr in,;
Copy the string
LDIRSB i.s a t~OM ,-oui:ine
which
i:; :;im.ilar to Z-80' ·.:
LDIR instruct :Lon
Then di.splay t"unct ion kc::-/
Wait for any key typeo
Erase the ·runct; ion kc~y l'r'orn

LCD
All cjon,~
Return to BASIC

String to be set in
function key ttl
Fill by NULl_

2.6 POS[T --- Locate cursor

Description

This 'f1mction positions the cursor on the display.

Th,-;; f:::,0'.3I T routine is funct ionf:ll l y equi val en t to the "L .. ,.)(>l t <
Cl.~rsc)r· ES(: command. Tt1e dif-fer<erlce i . s thc:1t tt1t-~ 11 L 1.. 1;_;,:--1L1:~

cursor command uses coordinates with
POSIT interprets the given coordincites

o·t' t' set of
a~..; 1 r· e lat iv e .

To
the

Locate

Entry f\Jame

Fx,try Address

Input parameter

Output parameter

Registers altered

POSIT

4.2BFH (1 7087D)

(H]=X position
[L]=Y position

None

(A),[H],[L] and flags

locate the_ cursor to the 5th character on the top line ,
following code will be
the cursor to the 5th

LXI H,5*256+1

CALL POSIT

15

used.
character· on the LCD top .l in,~

X=5,Y=l
Since POSIT u~es coordinates
relative to 1. Home is (1,1)
Place cursor there

2. 7 f;::,UJT --- Set a dot on LCD

[)escription

The PLOT routine sets a dot at the speci.f' ied dot ;:,(,·-,i t inn
on the l_CO. Coordinate.s are relative to 0. The PU')T ,·out Ln ,:,,

i,-:o not attected by the current 2,ystem .li n e ."'.ert: i t , ,, ,.
other wor-ds, the PL.OT routine can even ljr-aw d dot ,)n ::, ·, . :

~, y:-:,tern .'tine while the system line is being set.

The f-")LO r ro1.,1t ine does not error check dot: coor·d inate·.=:.. J: r , 1
pos.i.t:i.on i;'> given out ot the r21nge o ·f video rnc-,,rn o ry ; ;:h ,,.,,

results are unpredictable.

Entry Nc1me PLOT

t:::n try Addre.ss 74.O0H (2990!1-D)

Input parameter [D]FX position ot the dot

Valid Range: (0(::: X <='239)

[E]=Y position ot the dot

Valid Range: (0<= Y (:::63)

Output parameter None

Registers altered All

16

2 . g Uf'JPIJ)T -- - Reset a dot on L.CD

Ot~ ~,er· i pt ion

The UNPLOT routine pertorms opposite function t c, ~t, -'· ~-; c1,
.--out i. ne described in the prev i ou .~., sect .i. on. r he UNf'1_ n :·
resets a dot at the specified dot position.

The UNPLOT routine does not er·ror check dot coordinati::, s . i:,
,,1 po.c. it ion is given out of the r21nge of vi. rl e o rnerncw· :1 ; :· : ,:'.

results are unpredictable.

Entry Address
Input parameter

Output parameter

Registers altered

17

UNPL.01

74.0Hi (299050)
[D]=X position of the riot

Va.lid Range: (0< = X (=2 ,59)

[E]=Y position of the dot

Valid Range: (0 < = Y < =6-:,)

None

All

·~ q Sample program of PLOT and UNPLOT

The fol lowing progrc;lm illustrates how to u~H~ PL.en l:'lnd UNP LJ)T

routines. The progrc;1rn works ju ,;t as two f.:>c-~gr,10 N :~:3 t'3 ,Y :,f, _:

s tatements below are executed.

LIN~ (10,10)-(100,50),7,BF
L I NE (2~,20)-(90,40).0,BF

Sarnplfo< program of PLOT and UNPLOT routines .

l_XI D,10*256+1/ZJ

MVI H,100
r~· rLLOP:

PUSH D
CALL SETLIN

f-=>Qp D
INR E
MOV A,E
CPI 51
JC FILI-OP
LXI D,20"'256+20

MVI H,90
CU~LOP:

PUSH D
CALL Cl_RLIN

POP D
INR E
MOV A,E
CPI 4.lE
.JCI CLRLOP

RET

18

Fill R box o f (1 0, 1 0)
-(100,50)
Set up starting position
Ending X posit i on

Save X posit ic,n
Draw a horizontal line n-0,11
([D:J,[EJ) to (lH],LE:J)

Bump Y position

All line where d r· aw ?
No, draw next line
Now large box was filled .
clear small box inside of

the . large box.
Ending point of X

Clear a horizontal line of
([D],[E]) to (lHLLEJ)

Bump Y position
See if all Lines
are erased
No. 6egin to PRE3t:'.T the i1 1~x i:
line
All done
Return to RA'3IC.rJCJt e tl1 ,'Jt
this program should b e
invoked by EXEC st.citernent:

~ -

; Draw a horizontal line of ((D]~[E])-([H],[E])

f--'lJSH
PUSH
CALL
POP
POP

H
0
PL.OT
0
H

Save ending X in
~-3ave curr~nt ,-, ,y ,.
Set d d o t ;,0:L (le,

C :---1 :J
i·: ion

INR () Advance cur,-ent poi n i; (' L 9 ;---, i;
ci dot

MOV A, H See i 1' al .l den ,':
CMP D
.JNC SETLIN No . Set nex t rio t
RET

; Clear a horizontal line of ([D],[E]) - ((H],[E])

CLRL.IN:
PUSH H Save ending
PUSH D Save current

X
X and y

CALL UNPLOT Reset a dot at (LUJ,[E])
POP D
POP H
INR D Move a dot right
MOV A,H See if reached to ending
CMP D
JNC CLRLIN No, reset next dot
RET

19

X

2.10 How to interrogate the current cursor position

The CHPUT r··out ine always keeps tr·eick of the current: cw--·c-:,o r·
position. The current cur-sor
system book keeping area. The
the addresses shown below.
.locations c1re 1 r·e .lc:1t i ve.

p o ,:; i t i on i :; s t o red i. n U 1 . ,

cur ~-=-or J:)C)S it i. on ·.L ~.:. \ -.. : . 1 1r · ; -.. ~ ·,

The v·all.Jei3 store(j r.:-Jl: t:·-1 -'.:.-·~) ... :-

CSRX
CSRY

F 3E6H (621~380)
F3E5H (62437D)

c::ur·rent X f,JcJ::::. i ti cJ r·,
Curr.ent Y p,)::'- i t'. i ,::,, 1

20

CHAPTl:R 3 PRINTER DRIVERS

De.c,cript ion

The PRINT routine prints a character to system pr·intPr.
All interrupts except RS-232C are disabled. Shift+Stop wi l l
abort the PRINT routine.

3.1 PRINT --- Output a character to the printer

Entry Name

Entry Ad<jres.s

Input parameter

Output parameter

Registers altered

21

PRINT

6D92H (2805r.t)O)

[AJ•::Chc::tr·dcter· code to be
printed

Carry=0

Carry·-=1

Flags

If successful.

If abor-tec.i b-;
shitt+stop.

3.2 How to check if printer is ready

lr,e,·e is no routine or function wt1ich indicAte tt-1<'-1 statu~, c>r
t 1·, e .s y .stem pr int er . The f o l Low i n g s ,:'l mp J. :~ Pr' o <:.-:i r~ ;3 rn \ ·J i. L ,.

list t~le step.s necessary to get the statu.:~ c)·f tr1e: rn····:~(,t ·-~ ,- r··.

Check printer status routine

PORTC

F'RT:31\J::;:
IN
f\l'JX

XfU
f~ET

EQU 0BBH

PORTC
0v)v)001108
000000108

22

Printer st~tu~ port

Get printer status
Check BUSY and SELECT bit
Set zero if printer is r 0 0dy
On return zero=l shows printer L·,
rei:~dy.
zero=0 denotes pr' in t;er' i. ·:;
busy.

c:·-lAPTf:.::R 4.

RAm Bank Handlers

·rhe PC-8::1,00 contains 64.K
divided into two banks
additional 32k byte ram
PC8.300.

bytes of mi:irnor-·y. Ti 1e mt:::mo,·y
of memory (.32K byte:::- each) .

cartridge may be added to

.i :-'.
/\ ; I

The ROM provides two primitive routines which acce:c-.. 0:. dP,td
·1',"orn 1:h<':~ .se memory banks. Bank select ion is m.-'3de in b i.o,:!-:: .·;

ot 32K bytes. Switching banks without the'-',e ro1.~t:ineo~ will
cause application programs to halt. becau,2,e the or'nce·; .·,r.:,1·

will be unable to tind the next execut.:-1ble instruc ti,,,r, .

Care should be taken when switching
the R'.:3-2.::::.2c is opened while running

memory bank '3. 1 . e: f i'

in memory br:n-1k l ,cw1d
processor control i.s transferre(j to mernc,r~y bank two \.Ji_ U)o1,1 t;
closing the information channel; any chRracters r e ceivec:
w i 1.l be queued in memory bank 2. Communications pro i:oco l
set up in bc:·mk 2 coL~ld be di tterent trom the protoc21.l 3et up
in b,'.:lnk 1.

In format ion regarding the bank control hard1,;are can be i,iuncl
in the hardware reference manual.

Using the ROM supplied bank handlers wil~ eliminate any
problems which could arise during memory bank switching.
This is possible because the routines will run while the
interrupts are disabled.

23

4.1 GETBNK --- Read a byte from any RAM bank

Description

Read 1"1 b)'.te t1~om i:'1nY memory b 1:1 nk. The memo,·y t:,F,,,~~ ~ , , t· e-~0 ,ci
does not have to be the current memory b,1nk.. The r',)1 .1t: i.r· .. ·
ternpc)rar :i 1 y ct-,~1r1 i:.;1 ~.s the CLJrrer,t memor·y· t.) c1nk rt~ 2-,c1~~ f:~1t.:' f)\l 1. (:

and then restores rt1(-;-mory to the previous b,:-:ink.

Note: Interrupts should be disabled before cnlllng the
GETBNK r-outine.

Entry Ne1me

Entry Address

Input parameter

-Output parameter

Registers altered

24

GETBNK

7EECH (.324.92D)

[BJ= B,:'!nk Number
00:Bank ttl Main Bank
08: B21nk tt2
0C : Bani<. ~-3

[HL]=Address of tr1e t)yte to tH,·
read

[O]=Byte read

[A],[C],[D] and flags

4.2 PUTBNK --- Write a byte into any RAM bank

Description

Write a byte from any memory bank. The memory bank to wr i t e
does not have to be the current memory bank. The r01.xt in,;­
temporarily changes the current memory bank write t h e by te
and then restores memory to the previous bank.

Note: Interrupts should be disabled be f ore ca l l ing th ~
GETBNK routine.

Entry Name

Entry Address

Input pe1rameter

Output par.ameter

Registers altered

25

PUTBNK

7EEBH (324.91D)

[BJ= Bank Number
00:Bank #1 Main Bank
08:Bank 1*2
0C: Bank # :3

[HL]=Address of the byte to be
written

[D]=Byte read

[A],[C],[D] and flags

4.3 Sample program for different bank access
The fol lowing example shows how to use the PUTBNK r-out ine.

Change current year to 84
MVI D,04D

MVI B,00D

LXI H,TIMBUF+l0D

DI
CALL PUTBNK

MVI D,08D
CALL PUTBNK
EI

26

; New year i .s 8t~
Write low digit first
Always write it in bank l
(standard RAM)
Where year is maintained
in the bookkeeping area
Disable the interrup i:
Write low digit
Then write 1.mper digit oi'
the year

Write it
All done, allow all further
interrupts to come

CHAPTER 5 RAM FILE HANDLERS

There are three kinds of RAM files manipulated by PC~8300A,
namely text files (xxxxxx.DO), BASIC binary program ·rii.,~:,
(xxxxxx.BA), and machine code files (xxxxxx.CO). Only the
text files can be read and written by usual OPEN,READ,WRIT~
and CLOSE calls (Section 11.1 through 11.5). Deleting ~nd
renaming are supported for all types of files.

The RAM file manipulation routines only work on existing
files. To open a nonexisting file please refer to chapter 6 ''Ram
tile System" in the "Internal Structure of the PC-8300A" rncw,ua.l..

27

5.1 Opening a RAM file

The open a RAM file, the NULOPN routine can be used. Before
calling this routine, file name should be set up in FILNAM.

The NULOPN routine (and INDSKC,OUTFLl and CLSFIL routine in
subsequent sections as well) supports only text files whose
extension is ".DO". BASIC binary program files and machine
code file cannot be accessed by these routines.

5.1.1 Setting up file name

The ~ild name should b• formatted in FILNAM as below.

FILNAM=FB78H.
FILNAM thru FILNAM+5

The name of file may up to six characters long (plus the
extension). If the name is less than .six characters lon,_;i
the remaining bytes should be filled with spaces. The
characters in the name of the file may upper or lowercase.
The routine "NULOPN will convert all the characters to
uppecase.

FILNAM+6 thru FILNAM+7

The· extensioh is stored here. It is always "DO", ("o" L-;
stored in FILNAM+6, "o· is stored in FILNAM+7).

FILNAM+8

Always a space character.

28

5. 1. 2 NULOPN --- OPEN FILE

Description

Opens an existing file specified _in FILNAM.

If any error was detected during opening a I' iLe, contro t
directly goes to BASIC's error routine.

Once the file name is correctly set in FILNAM, noi,,1 NULOF''N
can be called.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

29

NUL.OPN

4.EBEH (201580)

[A]= File number
[E]= Open mode

1-Input mode
2-0utput mode
8-Append mode

(D]=Always F9H (03710)
[HL]=Should point to a

NULL character (00)

None

All

5.1.3 FINPRT --- Post processing of OPEN

After the file was successfully opened, you should c al l
"FINPRT" routine . The FINPRT is the post-proc essor of t he
NULOPN and sets up some book keeping ~rea correctly.

Entry Name FINPRT

Entry Address 0F26H (3878D)

Input parameter None

Output parameter None

Registers altered [A] and flags

30

5.1.4 Sample OPEN code
Shown below is a sample code to open a tile, "FILE", tor in·­

put. File number 1 is used.

; Open the tile whose name
LXI D,MYFILE
LXI H,FILNAM
MVI B,09D

SETFNM:
MOV A,M
STAX D
INX D
INX H
OCR B
JNZ SETFNM
MVI A,01D

is "FILE" for input using channel :IH.
File name is stored now
Where file name is set up
Length of the name

Move file name into FIL.NAM

Use channel 1
LXI D,0F9H"'100H+l Open mode is for input

[D] is always F9H
LXI H,EOL

CALL NULOPN
CALL FINPRT

MYFILE:
DB "FILE

EOL:
DB 00D

DO "

31

[HL] .should point to a NULL
character
Open the file·
Set up some variables in
system book keeping area

Name of the file to be
opened

; Null character used to call
NULOPN

5.2 Reading a character from a RAM file

Description

Read a character from a file.

After a file was opened, reading a character out ot the tile
can be performed by two ROM routines, namely SETFIL. and
INDSKC.

The SETFIL sets up a file pointer to the file table
specified by the file number passed in accumulator. INOSKC
reads the character into register A and sets the c arry t1~g
if end-of-file is reached.

Entry Name

Entry Address

Purpose

Input parameter

Output parameter

Registers altered

Entry Name

Entry Address

Pt.1rpose

Input parameter

Output parameter

Registers altered

SETFIL

4.E6BH (200750)

Set up file pointer to the
file control block

[A]=File number

None

Possibly all

INDSKC

5015H (20501D)

Read a character from a file

None

Carry flag set (1) if end of
file has been reached:
Carry flag reset if successful
[A]=Character read

(A] and flag:::.

The following demonstrates the use of SETFIL and INDSKC.

Read a byte from the file whose file number is in (A]

CALL SETFIL

CALL INDSKC
JC EOF

32

Set up tile table pointer of
·rile [AJ
Try to read a byte
EOF detected
Otherwise, [A] contains
character read

5.8 FILOUl - Writing a character to a RAM file

Description

Write a character to a file.

To write a character to the file t~,at has been opened by U ·,,:;
NULOPN routine, SETFIL and FILOU1 are used. F ILOUl
writes a cl"laracter~ in (AJ to the ·file prepared by t~,e St:::TF-"IL
call which always precedes the FILOUl call.

If an error occurs during the write, control is transi'erred
Basie's error routines.

Entry Name

Entry Address

Purpose

Input parameter

Output parameter

Registers altered

FILOU1

4FEFH (20,~63D)

Write a character to RAM fil e

[A]=Character to be written

None

None

Write a character in [AJ to the file in channel 2.

PUSH PSW Save a character
MVI A,02D Set UP channel
CALL SETFIL
POP PSW Restore character
CALL FILOU1 Output it to the file

33

5.4 CLSFIL ~ Closing a RAM file

Description

C l o s e a Ram F i l e . I f an error i s de t e c t e d co r, t r o l ·l s
transferred to Basie's error handler.

Entry Name

Entry Ad,jress

Purpose

Input parameter

Output parameter

Registers altered

34

CLSFIL

4EE4H (20196D)

Close a file

(A]=File ·~ of the file ~o be
closed

None

All

5.5 Closing all files

Description

The CLSALL routine closes all files. Not only RAM tiles but
also other devices supported by BASIC's generalized devic~
I/0 scheme are closed (this is also true for CLSFIL
routine).

Entry Name CLSAL.L

Entry Address 4FBFH ~ (204150)

Purpose Close all files

Input parameter None

Output parameter None

Registers altered All except [HL]

35

5.6 Sample file I/0 program
The following small program shows how to use file I/0

routine~~. The program copies a text file "SOURCE" to de'3-
tination file "COPY". If the file named "COPY" e1lr~ady c~x­
ists, the olrj one is deleted. This program uses two file
channels. Give MAXFILES command in BASIC before trying this
program so two or more channels can be used.

Sample file I/0 program
; Copy everything in a file "SOURCE" to a file "COPY"

COPLOP:

ISEOF:

LXI H,SOURCE Open "SOURCE" tor input as
file #1

LXI D,F!LNAM
LXI B,0009D
CALL LDIRSB

MVI A,01D
LXI D,0F9H*0FFH+01D
LXI H,EOL

CALL NULOPN
CALL FINPRT
LXI H,COPY

LXI D,FILNAM
CALL LDIRSB
MVI A,02D

LXI D,0F9H*0FFH+02D
LXI H,EOL

CALL NULOPN
CALL FINPRT

MVI A,01D

CALL SETFIL
CALL INDSKC
JC ISEOF
PUSH PSW
MVI A,02D
CALL SETFIL
POP PSW
CALL FILOUl
JMP COPLOP

MVI A,01D

CALL CLSFIL
MVI A,02D
CALL CLSFIL
RET

36

First set UP FILNAM

Length of file name
; Transfer file name into

FILf'\IAM
Use channel #1
Open mode is "for input"
[HL] should point to null
character
Do open the file
Set UP something
Then open destination t'il1~

; for outPLJt as #2

Use channel #2 for ·output
file
Open mode is "for output"
[HL] should point to null
character

; Do open output file
Magic word!

Then read a character from
source file
Set up pointer for file #1
Get a character
End of file reached
Save the character
Then set up for output

Reget cr1aracter
Output it to file #2
Keep copying until EOF
is reported

Everything was copied. Close
all files

Return to BASIC
This program assumes to be

called by EXEC statement

SOURCE:
DB
OB

COPY:
DB
DB

t::OL:
DB

"SOURCE"
"00 "

"COPY
"DO "

00H

37

from BASIC.

Source tile name

Destination file name

NULOPN requires [HL] to
point a null character

5.7 Killing a RAM file

The ROM supports three routines, KILASC, KILBAS and KILC0M,
each ot' which deletes a text file, BASIC binary Pr'ograin
file and machine code file, respectively. All of them need
special setup before being used.

LNKFIL is used to fix up directory structure.

SRCNAM searches for the specif i e,j t' i le, and returns some:
variables referred to by KILASC, KILBAS or KILCOM routines.
SRCNAM may also be used to see i'I' a certain file exi ~.,ts, and
to establish the type o'f the file and physical address wher e
the file is stored in RAM. Description of the SRCNAM routine
will be found in later section.

38

5.7.1 LNKFIL --- Fix up directory structure
Description

The LNKFIL routine ti xes up all possible incomplete " L :Lr1ks"
between f ile.s and their directories. Each file is assoc .i.a l:ed
with its directory and a link exists between them. Dur·ing
file I/0, there is a chance that the link is not properly
maintained. More precisely, there is a chance thc1t t he
link i .s intentionally left incorrect assuming it to be fixed
up later during further file I/0 Since deleting a -f ile
may be made while other file I/0 is in progress, and ·'iom,:;;
links may not yet have been fixed up, all the links should
be fixed explicitly before the deletion is pertormed.

Entry Name

Entry Address

Purpose

Input parameter

Output parameter

Registers altered

39

LNKFIL

233AH (9018D)

Fix up directory pointers

None

None

All

5.7.2 KILASC --- Killing a text file

Description

The KILASC is used to delete a text file.

Entry Name

Entry Address

Purpose

Input parameter

Output parameter

Registers altered

40

KILASC

21A8H (8616D)

Delete a text (.DO) file

Are given by SRCNAM call

None

All

Delete the text tile whose file name is "MYTEXT.DO"

COPFIL:

NOTFND:

NOTASC:

FILOPN:

MYFILE:

LXI D,MYFILE

LXI H,FILNAM

MVI B,09D

LDAX D
MOY M,A
INX H
INX 0
OCR 8
JNZ COPFIL
CALL LNKFIL

CALL SRCNAM

JZ • NOTFND

MOY 8,A

ANI .02D
JNZ FILOPN

MOY A,B
ANI 40H
JZ NOTASC
CALL KILASC

Where file name of the fil~
to be deleted is s t ored now
Move it here. SRCNAM alway,,.
search for a file whose name
is set in FILNAM
Length of the name

Do copy the filename

Fix up possible missing
links
Search for the file to be
deleted
The file was not found
give an error, or do an
everything
what you like
Save file type. File type is
returned from SRCNAM in [A]
See if this file is open
Yes. Pe~form your ~rror
processing
Reget file type
see if text ~ile bit is set
Not text file
This is a text file. Let's
delete it

Your error processing routine for the case when file is
not fo1 .. md

Your error processing routine for the case when the
specified file is not text file

Your error processing routine for the case when the
file is open

DB
DB

"MYTEXT"
"DO "

41

File to be deleted
It's extension

5. 7 . 8 KILBAS - - - Killing a BASIC bi n a r y progr am f il~

Description

KILBAS is used to delete a BASI C bina ry f i l e .

Entry Name KILBAS

Entry Address 2200.H (87040)

Input parameter Given by SCRNAM cal .1.

Output parameter No ne

Registers altered All

42

·-·

Delete the text file whose file name is "TEST . BA "

COPFIL:

NOTFND:

NOTBAS:

MYFILE:

LXI

LXI

MVI

LDAX
MOV
INX
INX
DCR
.JNZ
CALL

CALL

JZ

ANI

JNZ

CALL

D,MYFILE

H,FILNAM

8,090

D
M,A
H
D
B
COPFIL
LNKFIL

SRCNAM

NOTFND

60H

NOTBAS

KILBAS

Where file name ot the tile
to be deleted is stored n o ~
Move it here. SRCNAM always
search for a file whose name
is set in FILNAM
Length of the name

Do copy the file name

Fix up possible miss ing
links
Search for the file to be
deleted
The file was not found.
Give en error or do anything
what you like
See if this is really a
BASIC bina~y program tile
Not BASIC binary program
file
This is a BASIC binary file.

; Let~s delet~ it

Your error processing routine for the case when file is
not found

Your error processing routine for the case when the
specified file is not BASIC binary program file

DB
DB

"TEST
"BA "

43

File to be delete
It's extension

5.7.4 KILCO~ --- Killing a machine code file

Description

The KILCOM is use d to del e te a machi ne c o de fil ~ -

Entry Name

Entry Address

Input parameter

Output para~eter

Registers altered

44

KILCOM

21C2H (8642D)

Are give~ by SRCNAM c al l

None

All

,_.

Delete the machine code file whose file name is "PASCAL. CO"

COPFIL :

NOTFND:

NOTCOM:

MYFILE:

LXI D,MYFILE

LXI H,FILNAM

MVI 8,09D

LDAX D
MOV M,A
INX H
INX D
DCR 8
JNZ COPFIL
CALL LNKFIL

CALL SRCNAM

JZ NOTFND

ANI 20H

JZ NOTCOM
CALL KILCOM

Where file name ot t h e 'til e
to be de l eted is stored n o w
Move it here. SRCNAM alwa y s
search for a file whose name
is set in FILNAM.
Length of the name

Do copy the file name

Fix up possible mi ssing
links
Search tor the file to be
deleted
The file was not found .
qive an error or do anything
what you like
See if machine ~ode f ile bit
is set
Not a Machine c6de file
This is a machine code file.

; Let's delete it

Your error processing routine tor the case when file is
not found.

Your error processing routine for the case when t he
s pec i fied file is not a machine code fil e .

DB
DB

"PASCAL"
"co "

45

File to be deleted
It's ·exten.sion

5.8 Renaming a RAM file

Description

Rename a File.

Note: The two character extension ot the filename .sr1oul cl
remain the same.

If the ti le to be renamed does
name i.s already in use control
error handler .

not exist or the new ·file
i.s transferred to 8asic' ·:;

Entry Name

Entry Address

PL~rpose

Input parameter

Output parameter

Registers altered

46

NAMEB

2228H (874.7D)

Rename a file

Old file name is stored in
F.ILNAM.

New file name is stored in
FILNM2.

FILNM2=FB81H

Note: FILMN2 uses the sarn ,~
format as FILNAM.

None

All ~xcept [HL]

5.9 Search for a RAM file

Description

Search for a filename stored at FILNAM and return its
address in RAM.

Note: Directory links should be fixed up before calling the
SRCNAM routine.

Entry Name

Entry Addre.ss

Input parameter

Output parameter

Registers altered

47

SRCNAM

2298H (8859D)

File name should be set up in
FILNAM

ZeroFlag Set if file does not
exist.

The following information is
valid only when Zero~lag is
reset (0} .

. (A]=File information ·

Bit 7=Always set
Bit 6=Set if text file
Bit S=Set if machine code tile
Bit 4=Set if built in utility

(i.e. BASIC,TEXT or TELCOM)
Bit 3=Internal use
Bit 2=Internal use
Bit l=Set if the file is open
Bit 0=Internal use

(HL]=Pointer to the directory
entry for this file

[DE]=Address of the file

All

5.10 Sample program to search for a file

The Fol lowing code demonstrates the use of the SRCNAM
routine. The routine below searches ·for a text file. I'!' t;r,,}
file exists the routine will count the number of byte.s in
the ·rile.

Note: A text tile is terminated by a Control-2 (Hex 1A).

Count the number of bytes in the text file whose name l3

"SAMPLE. DO" . The
; number is returned in [HL]. End of file mark is also includ<.~d
in the result.
CHKLEN:

COPFIL:

LENLOP:

MYFILE:

NOTFND:

NOTASC:

LXI D,MYFILE

LXI H,FILNAM

MVI B,09D

LDAX D
MOY M,A
INX D
INX H
DCR B
JNZ COPFIL
CALL LNKFIL

CALL SRCNAM
JZ NOTFND
ANI 40H

JZ NOTASC
LXI H,0000D

LDAX D
INX D
INX H
CPI lAH
JNZ LENLOP
RET

DB "SAMPLE"
DB "DO "

; Where the name of the file
; is stored
~Copy is here since SRCNAM

always gets file
name out of here.
Length of the file name

Fix up all possible incor
rect links
Search for the file
No such a file in RAM.
File exist. Make sure this
is a text file
Not a text file. Blow him up
Reset tt of bytes in the file

Get a byte out ot the file

Increment tt of bytes seen
Is this the end of the file?
No. Keep counting
All done. [HL] holds# or
bytes in the file

Place error routine for the case when file not found.

Place error routine for the case when the file is not a
text file.

48

5.11 Changing maximum file number (MAXFILES)

Description

Changes the maximum number of files set up by Basi c ' s
"MAXFILE" command.

This rout in a.1.. :,-.o
setup. The r~emain•J
by using the CLEARO

Updates the file buffer allocation area.
performs a partial file related pointer
file related pointers should be set up
routine.

Note: DEFILE requires some overhead.

1) Routine CLSALL must be executed to close all files.

2) Routine CLEARO must be executed tor initialization.

The DEFILE upd~tes the stacK pointer. As long as the DEFILE
has been originally designed to be used by BASIC, and BASIC
allocate• its stack space below the file buffers, BASIC
needs stack pointer to be updated whenever the tile buffer
allocation is changed.

The DEFILE updates the stack pointer. DEFILE was designed
to work with BASIC. Basic al locates i t .s stack space below
the file buffer area. The stack pointer must be updated
whenever the buffer allocation is changed.

Note: Everything push on the stack du~ing an application
is lost after the DEFILE routine is executed.
Therefore, the return address of basic is also
lost. To return to Basic a "JMP" must be invoked.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

49

DEFILE

7F1CH (32540D)

[A]=Number of files

None

All. Stack pointer is also
changed

5.11 . 1 CLEARO - Reset Environment of BASIC

Description

This routine is used in conjuction with the DEFILE routine .
CLEARO performs a reset of the pointer setups.

Entry Name CLEARO

Entry Address 3FFCH (16380D)

Input parameter None

Output parameter None

Registers altered All

50

~hange the number of files. New number is passed in [A]
~ADY EQU 062DH

PUSH PSW
CALL CLSALL
POP PSW
CALL DEFILE
CALL CLEARO
.JMP READY

51

Save new number of files
Close all open files if any
Reget # of files
Change the number
Set up some pointers
Return to BASIC command
level directly. We cannot
use
"RET" here even if this
program was invoked by
EXEC statement since return
address in stack has been
lost

5.12 How to acquire the current MAXFILES value.

Basic keep.s track of the maximum number of ·files allowed
(MAXFILES) in its book keeping area. The MAXFILES ~lW~YS
holds the current MAXFILES value.

MAXFILE=FB62H ; Current Maxfiles value

52

\PTE:R 6 PHYSICAL CASSETTE DRIVERS

~-1 CMTRMT --- Motor control

Description

The CMTRMT (for CMT remote control) is used to turn the
cassette motor on or off. The CMTRMT routine will be u,:sed
ju~-t to contr·ol cassette motor without subsequent cassette.
I/0 operation. In this sense, CMTRMT is similar to the MOTOR
command in BASIC. To turn the motor on tor subsequent
cassette read/write operation, there is no need to call the
CMTRMT routine explicitly since CSRDON or CWRTON routine
automatically controls the cassette motor. To turn the motor
off after all cassette I/0 was finished, use CTOFF.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

53

CMTRMT

6FD9H .(28633D)

[E]=0 Turns motor off
[E]()0 Turns motor on
None

[A] and flags

6.2 0ATAW ---- Write a byte' to cassette

Description

The DATAW routine writes a byte stored in [A] to cassette
tape. The Baud rate for the write is 600. If SHIFT+ST0P is
pressed the write is aborted. Before using this routine
t~)e cassette motor .shoul.d be turned on. Generally the CWRT0N
routine is cc1lled to set up for a cassette '"'rite
operation, including turning the motor on.

C:ntr·-y Name

Entry Address

Input parameter

Output parameter

Registers altered

54

DATAW

6FEBH (286510)

[A]=Character to be written

Carry set if aborted by
SHIFT+ST0P
Carry ~eset if successful

(A],(B],(C],(D],[E] and flags

,,
3 OATAR --- Read a byte from cassette

Description

The DATAR r·outine is used to read a byte from the cassette
tape drive. (Data must have been written at 600 Baud).

The DATAR routine does not check the stop bit (DA"fAW writes
two .st;op bits). So, there is no ·framing or over-run
condition. This was done to give the caller enough time
to process the byte read before next byte arrives.

Before using the DATAR routine, cassette motor should be
turned on.

Entry Name

Entry Address

Purpose

Input parameter

Output param.eter

Registers altered

55

DATAR

708El, (28814.D)

Read a byte from cassette tape

None

Carry set if aborted by
SHIFT+STOP

C~rry reset if successful

[A]=Character read from tape

[A],[8],[E],[H],[L] and flags

6. 4. CSRDON --- Set tJP cassette for read

Description

Hie CSRDON routine is used prior to any read operation.
This routine turns on the cassette motor checks for the
carrier . I·f St-iIFT+STOP is pressed while this routine is
waiting for carrier control is transferred to the I/0 error
handler after the cassette motor is turned off.

The CSROON routine disables all further interrupts. The
interrupts are usually reenabled when CTOFF is called.

Interrupts should be disalbed to handle serial to parallel
conversion and parallel to serial conversion.

Entry Name CSRDON

Entry Address 18EFH (6383D)

Input parameter None

Output parameter None

Registers altered All

56

Typical cassette read operation flow i.s show below.

r- fypical cassette read flow

CALL CSRDON Turn on motor, wait tor car­
rier

To detect correct beginning of the data, special sync charac­
ters are 1...1sua l J. y

written on the tape.
; Wait for the sync characters to come

Actu1:1l sync character code and its number are implementat:l.on
dependent

GETSYN:
MVI B,10D

SYNLOP:
PUSH B
CALL DATAR
POP B
JC ABORT
CPI SYNCHR
JNZ GE;:TSYN

DCR B

JNZ SYNLOP

Wait· for sync character

Read a byte

If SHIFT+STOP
Is this my sync character?
No. R~set # of sync
characters seen
And reset from the beginning
This is my sync char;
See if enough .sync
characters
are seen
No. Keep eating

Sync characters have been recognized
Now read data bytes and process them

CALL DATAR Get data byte
JC ABORT ; If SHIFT+STOP

CALL DATAR
JC ABORT

All data have been processed
Finish cassette read operation

CALL CTOFF

57

Get next data
If SHIFT+STOP

Turn off . motor

6.5 CWRTON --- Set up cassette for write

Descr-·iption

Initialize cassette tape drive to perform tape write
operations. This routine writes out a null header to the·
tape. There is no error condition. All further interrupts
are disabled. Interrupts are enabled by the CTOFF routine.

Note: Interrupts should be disabled during cassette I/0.

,::ntry Name

Entry Address

Input parameter

Output parameter

Registers altered

58

CWRTON1

1901H (64.01D)

None

None

All

~ ~ CTOFF ----Turnoff cassette motor
Description

Turn oft the cassette motor and enable intefrupts.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

59

CTOFF

1915H (6421D)

None

None

[A],[D],[E] and flags

6.7 Sample cassette I/0 program

The folowing routine demonstrates the use of CSRDON, DATAR,
and CTOFF. The routine will read a file created by N-BASIC
and display all the data in that file. N-Basic does not
terminate ·files with an End.:..ot-File marker. To terminate
this routine press Control-C.

Type a cassette data file created by PC-8000 N-BASIC

CASLOP:
CAL.L CSRDON

GETSYN:
MVI B,06H

SYNLOP:
PUSH B
CALL OATAR
JC ABORT
CPI 9CH
JNZ GETSYN

OCR 8

JNZ SYNLOP
LXI H,BUF

REOLOP:
CALL DATAR
JC ABORT
MOV M,A
INX H
CPI 13D
.JNZ REOLOP
CALL CTOFF

l_XI H,BUF

)SPLOP:

60

Turn on cassette motor· and
wait for carrier This
program
will be aborted if user
typed
a SHIFT+STOP during waiting
for carrier and control
comes
back direct to BASIC from
CSRDON. If YOU want to avoid
this, use "ERRJMP".

Wait for 6 sync characters
(9CH) to come

Read a byte from cassette
If aborted
Is this a sync characters?
If not, Reset tt of sync
characters seen and restart
from very beginning
This is my sync characters
See if 6 sync characters

were seen
No. Continue
Beginning of record was
found.
Read the record into butter
called BUF.

Read next characters
If aborted by SHIFT+STOP
Put it in to buffer

End of record?
No. keep eating
Everything in this record
was read.
Stop cassette motor
Then display this record on
LCD

-

ABORT:

MOV A,M

CALL CHPUT
INX H
CPI 13H
,JNZ DSPLOP
MVI A,10D
CALL CHPUT
JMP CASLOP

CAL.L CTOFF

MVI A,07D

CALL CHPUT
RET

61

Pick up a character out of
buffer
Display it on LCD

Everything was displayed?
No. Oisplay next
Do line feed

Then try to read next record
again

, Aborted by SHIFT+STOP.Turn
off
cassette motor and allow
further
interrupts to come.
Beep to tell abort request
is accepted

And return to BASIC.

CHAPTER 7 PHYSICAL RS232C DRIVERS

7.1 INZ232 --- Initiali2e RS-232C port

Oescr' ipt ion

The INZ232 routine initializes the USART, sets up the baud
rate, parity control, data length, stop bits and RTS and DTR
lines. RS232C queue (receive queue. lransmission is not
queued) is cleared. In PC-8300A, the USART is used by thre~
devices, namely RS-232C port, floppy disk interface and
another seri~l interfaced stor~ge device. The INZ232 routin~
selects RS-232C port. It the USART has been used by another
device, DU error is reported. Xon/Xoff control and SI/SO
control is enabled or disabled by the current defau.l t
settings (one displayed by the STAT command in Term).

Entry Name

Entry Address

Input parameter

62

INZ232

6F58H (28504D)

[H]=Baud rate specifier
1=75 baud
2=110 baud
3=300 baud
4=600 baud
5=1200 baud
6=2400 baud
7=4800 baud
8=9600 baud
9=19200 baud

[L]=Data length,parity and
stop bit specifier

Bit 4 Bit 3 Data
Length

0 0 5 bit~:;
0 1 . 6 bits
1 0 7 bi.ts
1 1 8 bits

Bit 2 Bit 1 Parity
0 0 Odd parity
0 1 Even

parity
1 X No parity

Bit 0 Stop bit
0 1 bit:
1 2 bits

(* 1)

(*1) When data length is 5
bits, stop bits is 1.5 bit

Output pat~ameter
Registers altered

63

[B]=RTS and DTR specifier
Bit 7 RTS

0 l active
1

Bit 6
(Z)

1

[C]=Should be FFH

None
None

0 inactive
DTR
1 active
0 inactive

7.2 SETSER --- Initialize RS-232C port using mode string

Description

The SETSER routine also initializes the RS-232C port. In
contrast to the INZ232 routine, the communications protocal
is determined by the "mode string". The mode str·ing is
ASCII string that has identical format to the string used in
the STAT command in TELCOM and OPEN statement in BASIC.

The PC-8300A maintains current default mode string (the mod,)
string specified by most recent STAT command, OPEN statement
or SETSER routine itself). The default mode string is callerl
"SERMOD". Following short routine initializes RS-232C por·t
using current mode setting.

Entry Name SETSER

Entry Address 1C4-EH (724-6D)

Input parameter [HL]=Points to the mode string

Output parameter None

Initialize RS-232C port in current default mode
LXI. H,SERMOD Where default mode string is

stored
CALL SETSER Do init using it

SERMOD=F4-06H

64

3 SO232C --- Send a character to RS-232C port

Description

The SD232C routine sends a character
RS-232C port. The RS-232C port must
using SD232C routine.

pa~,sed in [A J
be initialized

to the
before

The SD232C routine performs Xon/Xoff control if enabled .
When Xon/Xoff is enabled, and Xoff (·'s) is received, th,~
SD232C wait s for Xon c · Q) to come before s ending a
c haracter.

In addition, the SD232C per ·for·ms SI/SO control if enabled.

Entry Name

Entry Address

Input parec1rrt<"::ter

Output parameter

Registers altered

65

SD232C

6EBEH (28350D)

[A]=Character to be sent

Carry reset if successful
Carry set if aborted by
SHIFT+STOP

[A] and flags

7.4 RCVX --- Check for character is ready in RS-232C queue

Description

The RCVX routine is used to see if there is a
the RS-232C queue. Before u.sin9 this routine,
must be initialized by the INZ232 routine.

cr,aracter in
RS232C port:

Entry Name

Entry Address

Input pari':lmel:er

Output parameter

Registers altered

66

RCVX

6DC2H (28098D)

None

Zero flag set if no character
is in queue Zero flag reset if
character(s) are in queue.

When the Zero flag is
reset~ [A] shows number of
characters in the
queue

[A] and flags

~ ~ RV232C --- Get a character from RS-232C queue

The RV232C routine is used to take a character out of the
RS-232C receive oueue. If no character is available, th u
RV23 2C WAits for character to come through the port.

fhe RV232C routine detects a
detected, the RV232C is aborts
upon return.

SHIFT+STOP request.
and tr1e Carry Flag i s

I i"

set

It a character is waiting in the queue the RV232C routine
take.<;, it 01Jt of the queue. I ·r the rec ieve is s uccess ·t' ul th,.~
character is return~d in the accumulator and the Zero flag
is set.

It Xon/Xott control is enabled queue control handled
internally .. If the aueue becomes full XON/XOFF sends~
Control-S and waits tor the quew,~ to be emptied. When the
queue becomes empty XON/XOFF s~nds ~ Cntrol-Q to resume the
reception of data. Also, it a Control-S or a Control-Q is
recieved they trapped by the ROM routines and not are not
sent to the caller.

It S I/SO control is enabled, the RV232C routine appends or.
removes MSB of the received character before passing it to
the caller. SI/SO control characters the~selves .are nqt
passed to the caller, but they are stripped off internally,
unle~s SI/SO control ii disabled.

If the
RV232C
error.

received character in the queue is erroneo1Js, th.-:
returns Zero reset to indicate the exist e nce of an
In this case, contents of [A] are meaningless.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

67

RV232C

6003H (28115D)

None

Carry set if aborted by
SHIFT+STOP.

Carry reset and Zero flag set
if successful [A] holds the
character picked up out of the
oueue.

Carry reset and Zero flag
reset if there is a receive
error [A] contains a garbage
character in this case.

[A] and flags.pa

7.6 CLSCOM --- Deactivate RS-232C port

Description

The CLSCOM routine deactivates the RS-232C port. DTR and RTS
l i n e .s a r e r e s e t t o a f a l s e s t a t e t o m i n i m i 2 e p o w e t'
consumption. The multiplexer is released so other devices
may use the USART. The CLSCOM routine should be cal led after'
RS-232C operation is finished. Otherwise, any attempt to
use the floppy disk will result in a DU error.

Entry Name CLSCOM

Entry Addr'e .ss 6FA8H (28584.0)

Input parameter None

Output parameter None

Registers altered [A] and flags

68

-, ENABLX --- Enable Xon/Xoff control
Entry Name ENABLX
Entry Address 6F8DH (285570)
Input parameter None
Output parameter
Registers altered
Oescriptioh

None
[A] and flags

The ENABLX is used to enable Xon/Xoff control for
future R3-232C I/0. This routine should be called before
INZ232 is called to initialize RS-232C port.

69

7.8 OSABLX --- Disable Xon/Xoff control

Descr·ipt ion

Disable XON/XOFF control. This routine should be prior to
,:he Ga J. J. ing or the INZ2-32 routine.

Entry Name OSABLX

Entry Address 6F8EH (285580)

Input parameter None

Output parameter None

Registers altered [A] and flags

70

- g How to enable/disable SI/SO control

The only way to enE'lble or disable SI/SO
address which holds the SI/SO status.
prior to calling the INZ232 routine.

r:-:nable SI/SO control
ENAP,Lf,:

MVI A,, 11 S"

is change the memory
This should be done

STA SERMOD+5
RET

Enable SI/SO control

; Disable SI/SO control
DSABL.S:

MVI A,"N"

srA SERMOD;5
RET

Address of SERMOD
characteristics.

SERM00:::F406H

71

Disable SI/SO control

which tells default RS-232C

CHAPTER 8
8.1 TIMRD

TIME HANDLERS
Read current time and date

Descr' i pt; ion

The TIMRD routine is used to read the current time and date
(day and month only) from calendar clock chip. The time and
date are stored into the buffer pointed by [HL] in the
following format.

Note:

[HL]
[HL]+l
[HL.]+2
[HL]+3
[HL]+4.
[:;L]+5
[HL]+6
[HL]+7
[HL]+8
[Hl_'J+9

Lower digit of second
Upper digit of second
Lower digit of minute
Upper digit of minute
Lower digit of hour
Upper digit of hour
Lower digit of day
Upper digit of day
Day of the week .
Month

(0-9)
(0-5)
(0-9)
(0-5)
(0-9)
(0-2)
(0-9)
(0-3)
(0:Sun - 6:Sat)
(1:Jan - C:Oec)

Interrupts should be disabled prior to the call to
this rouine.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

72

. TIMRD

7 359H (295290) .

[HL]=Pointer to buffer where
the current time and data ar~
read into.

Current time and date are
stored in the buffer

[A] , [B] , [C] , [D] , [H] , (L'] and
flags.

Typical TIMRD u:,,age
LXI H,TIMBUF

DI
C,!),LL fIMRD
EI

f Where time and date are read
into.
Disable interrupt
Read current time and dab~
Allow further interrupt to
come

The ROM uses a buffer located at F832h to store the time and
cl ,'Jte. Thi.s buff~r may be used when c,3lling the rIMRO r-oul:ine.
TIMBUF + 10 contains the lower digit of the year specified
by the Date$ statemenin Basic, TIMBUF+l~ contains- the upper
didgit of the year.

Note: The year bytes are always maintained in bank #1
(main bank) • To read the bytes when current bank
is not mai~ bank, us~ GETBNK routine.

TIMBUF=F832H

73

8.2 TIMSET --- Set tlme and date

De;.;;c r·ipt ion

Res et the time and date on the calend~r clock c hi~.

Note: Interrupt.s sho1...1ld be disabled prior to execu tion
of this routine.

Entry Name

Entry Address

Input parameter

[HL] Lower
[HL]+l Upper
[HL]+2 Lower
[HL]+3 Upper
[HL.]+4 Lower
[HL]+5 Upper
[HL]+6 Lower
[HL]+7 Upper
[HL]+8 Day of
[HL]+9 Month

Output parameter

Registers altered

74

TIMSET

735AH (29530D)

(HL]=Point er to the bu1=f er
where ·new time and date a re
set.

d i git of second (0-9)
digit of second (0-5)
dig;i.t of minute (0-9)
digit of minute (0-5)
di9it of hour (0-9)
digit of hour (0-2)
digit of day (0-9)
digit of day (0,...3)

the week (0:Sun 6:Sat)
(1:Jan - C:Oec)

None

[A] , [B] , (C]. [D] , [H] , [L] and
flags

(''-1APTER 9 SOUND GENERATOR

9.1 MUSIC --- Generate sound

Oe,-,cr iPt ion

The MUSIC r·outine is used to generate sound o·f spec:i..-r=:t.ed
freouency and length. Interrupts are disabled during th0

sound routine. I·f SHIFT +STOP key sequence is detected, ROM
aborts immediately.

Note: No data is passed back to the calling routine. No
error processing is generated if an error occurs.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

75

MUSIC

730DH (29453D)

[DE]=Frequency. [DE] should be
less than 0C000H

[B]=Length. "0" is interpreted
a~ 256. Frequency and length
ar:-e interpreted in exactly

. same way as the SOUND
statement in BASIC

None

[A],[8],[C] and flags

CHAPTEf~ 10 SCREEN EDITING

Ther·e are two screen editor routines, namely PINLIN and IN­
l_IN. In BASIC, PINLIN is; used for program input, while c:latd
input. (ie: INPUT and LINE INPUT statements) uses the INLIN.

The only one difference in PINLIN and INLIN is the PINLIN
always scans lines ·from the posit ion where cursor was lo­
cated when INLIN was called. This eliminates the prompt
string from being included in the result string.

10.1 PINLIN Program input

Entry Name PINLIN

Entry Address 4.798H (18328D)

Input parameter None

Output parameter. Carry set if PINLIN is aborted
by STOP or ·· C Carry re.set
if successful. (ie: PINL IN i ,_,
terminated by a c,,~rriage
return). Entered string is
stored in BUF terminated by a
null character.

Registers altered All

Description

The PINLIN is a
supports the
Basicsupports.

screen oriented editing routine.
same cursor and control keys

PINL.IN
that

Control is returned
"STOP", or Control-C
the entered string
terminated by a null.
the entered string.

"RETURN",
is pressed
string is

stored with

to the calling routine when
is pressed. When "Return"
is passed in BUF. The
The carriage return is not

The PINLIN always begins to scan a logical line from the
beginning. That is if a prompt message was displayed
before the PINLIN was called, the string is also considered
a.s a part of the entered string. For such application in
that a prompt string is used just like INPUT statement in
BASIC, use instead of INLIN. If PINLIN is terminated by a
STOP or a C, PINLIN returns with carry set. And nothing is
stored in BUF (F5A1H).

76

• '". '2 Ii'JL IN --- Data input

Description

Get a line of data from the screen oriented editor.

The routine ,.;cans the line from the cursor posit ion prior
to the inlin call as long as the cursor stays on the same
line when the r·out ine is terminated.

Entry Name INLIN

Entry Address 4.7AAH

Input parameter Same as PINLIN

Output parameter Same as PINLIN

Registers altered Same as PINLIN

77

CHAPTC::,~ 11 ERROR HANDLING

11.1 TDking control on error-

Some the of the Rom routines decribed in this manual
transfer process control to Basie's error handler. To
pr-event control from returning to Basie's error handler· the
ROM provides a method ot' keeping control ot' the process.

To exercise this option the memory location "ERRJMP'' F3FEh
(Book~eping area) must contain the address where control
:":"\t-10L~ld be r·etL~rr1ed t(').. •

When Basie's error handler in invoked the routine checks the
value at F3FEh. If the value is 0 (0 is the Default) Basic
keeps control. However, if the value is not 0 control is
transferred to the routine at that address.•

When control returns to the call{ng routine
number is stored in register E.

the error·

Note: The stack contains garbage when an error occurs.
It is the responsibility of the programmer to
reset the stack pointer to the correct value.

A ·ft er cont r o l is regained a f t ~ r an error the
contents of ERRJMF must be reset to 0.

78

• · . 2 Sample program· for ERRJMP handling

rr1e fol lowing sample pr·ogram illustrates tl')e use of er,·or
trapping technique a.s described in section ll. l. rh ,c:·
routine performs the following.

1) Call routine CSROON
2) Press SHIFT+STOP while waiting tor carrier.
3)

; CSRDON call. Use ERRJMP so control comes back to me ~ven when
the CSf~DON Wc':1:3

; aborted by SHIFT+STOP.

ERR.JMP

stack

MYERROR:

OOPS:

EQU
L_XI
DAD

0F3FEH
H,0000D
SP

SHLD MYST ACK

LXI H,MYERROR

SHLD ERRJMP
CALL CSRDON

LXI H,0000D

SHLD ERRJMP

MOV A,E

CPI 24D
JNZ OOPS

LHLD MYSTACK

SPHL

79

Error hook entry
Get current stack pointer

Save it so we can reset

in case of error
Set up my own error handler­
address so BASIC does not
take
control in case of an
error

All setups where over
Let's call CSRDON now
Successfully done.
Reset ERRJMP so standard
error processing can be
activated for further errors

Error during CSRDON
Get error number
Make sure this is I/0 error
Should never happen!
Handle specially
Was I/0 error. Reset stack
pointer

Special handler in case of
internal error here

CHAPTER 12 MISCELLANEOUS ROUTINES

Block Tr~nsfer Routines

12.1 LDIRSS --- Simulate Z80's LDIR instruction

Description

The LDIRSB simulates 280' s LDIR instruction. Only one
difference is the LDIRSB alters [A] and flags.

Entry Name

Entry Address

Input parameter

Output parameter

Register altered

80

LDIRSB

6C78H (27768D)

Same as Z80's LDIR
[HL]=Source address
[DE]=Destination address
[BC]=Length

Same as Z80's LDIR instruction

All

, - 2 U)DR~-38 --- Simulate Z80 • s LOOR instruct ion

Description

The LDDRSB simulates 280' s LDDR in~;truct ion. Similar· to the
LDIRSB, LDDRSB also alters [A] and flags.

Entry Name

Entry Address

Input parameter

Output parameter

Regi.ster altered

81

LDDRSB

6C83H (277790)

Same as Z80"s LDDR instruction
[HL]=Source address
[DE]=Destination eddress
[BC]=Length

Same as Z80's LDDR instruction

All

C~APTER 1 KEYBOARD DRIVER .•..............•......•.•......•.......... ~
1.1 CHSNS --- See if key is entered•..........................
1.2 CHGET --- Get a character from the keyboard ~
1. 3 Sample program of CHGET•....•.................. 3
1. 4 BREAKX --- Sense shift+stop keys•........................... 5

CHAPTER 2 LCD DRIVERS .. 6
2.1 CHPUT --- Display a character on console 6
2. 1.1 CHPUT parameters•...•.................................. 6
2 . 1 • 2 ESC commands ..••.•••..•.•.••..• _•.. ..•.................. 7
2.1.3 Control Characters•..............•..................... 10
2. 2 DSPFNK __; Display function keys•....... 11
2.3 Setting function key string 12
2. 4 ERAFNK --- Erase function key line•......•................... 13
2.6 POSIT --- Locate cursor •...........................•.........•... 15
2. 7 PLOT --- Set a dot on LC-D•................. . 16
2.8 UNPLOT --- Reset a dot on LCb 17
2. 9 Sample program of PLOT and UNPLOT•.... 18
2.10 How to interrogate the current cursor position .•................. 20

CHAPTER 3 PRINTER DRIVERS•..... 21
3.1 PRINT Output a character to the printer 21
3.2 How to check if printer is ready•.......•......•.... 22

CHAPTER 4 . . . • • . . . • • . . • . • • . . • • . . • . • • • . . . • • ~ •......••. 2 3
4.1 GETBNK --- Read a byte from any RAM bank 24
4.2 PUTBNK --- Write a byte into any RAM bank....................... ··· ,.5
4.3 Sample program for different bank access ~..... .S

CHAPTER 5 . RAM FILE HANDLERS•......•........ ~ 27
5.1 Opening a RAM file ... 28
5.1.1 Setting up file name ...•.................................•.. 28
5 .1 . 2 NULOPN --- OPEN FILE•........•......................... 2 9
5.1.3 FINPRT --- Post processing of OPEN•................... 30
5 .1. 4 Sample OPEN code•..•........•...................... 31
5.2 Reading a character from a RAM file•................... 32
5.8 FILOUl - Writing a character to a RAM file ...•............•...... 33
5.4 CLSFIL - Closing a RAM file•.........................•.. 34
5.5 CLSALL - Closing all files ..• ~ ..•.•.........•.................... 35
5.6 Sample file I/O prog;ram ..•....•.....•..........•................. 36
5.7 Killing a RAM file-......... _ ""· 3.8
5.7.1 LNKFIL Fix up directory structure •...................... 39
5.7.2 KILASC --- Killing a text file ..•• ~•.. 40
5.7.8 KILBAS --- Killing a BAS!C binary program file 42
5.7.4 KILCOM --- Killing a machine code file 44
5.8 Renaming _a RAM file•..................... 46
5.9 Search for a RAM file .. 47
5.10 Sample program to search for a file•............. 48
5.11 Changing maximum file number (MAXFILES) 49
5.11.1 CLEARO - Reset Environment of BASIC
5.12 How to acquire the current MAXFILES value 52

CHAPTER 6 PHYSICAL CASSETTE DRIVERS 53
6.2 DATAW Write a byte to cassette 54
6.3 DATAR Read a byte from cassette•............ . .. 55
6.4 CSRDON --- Set up cassette for read .•........................•... 56
6. 5 CWRTON --- Set up cassette for write 58
6.6 CTOFF ----Turnoff cassette motor •........................•.•... 59
6. 7 Sample cassette I/0 program 60

CHAPTER 7 PHYSICAL RS232C DRIVERS 62
7.1 INZ232 - - - Initialize RS-232C port .•.....•....................... 62
7.2 SETSER --- Initialize RS-232C port using mode string 64
7.3 SD232C --- Send a character to RS-232C por~ 65
7.4 RCVX --- Check for character is ready in RS-232C queue 66
7.5 RV232C --- Get a character from RS-232C queue 67
7.6 CLSCOM --- Deactivate RS-232C port 68
7.8 DSABLX --- Disable Xon/Xoff control ••....•.......... . •........... 70
7.9 How to enable/disable SI/SO control•.•......... 71

CHAPTER 8 TIME HANDLERS •..•••••...•.•••••.•.•.•••.....••.......•• 7 2
8 .1 TIMRD Read current time ·and date•.................... 7 2
8.2 TIMSET --- Set time and date•...•..•. · 74

CHAPTER 9
9.1 MUSIC

CHAPTER 10
10.2 INLIN

SOUND GENERATOR .. 7 5
Generate sound•.................................. 7 5

SCREEN EDITING
Oa ta in Put · ·· ~ _ 7 7

CHAPTER 11 ERROR HANDLING ..•..•.....••.........•.....•............ 78
11.1 Taking control on error•.............. 78
11.2 Sample program for ERRJMP handling•.•... r •••••••••••••• 79

CHAPTER 12 MISCELLANEOUS ROUTINES .•............................... 80
Block Transfer Routines•............................... 80
12.1 LDIRSB --- Simulate Z80's LDIR instruction 80
12.2 LDDRSB --- Simulate Z80's LDDR instruction•. 81

PC-8300 HARDWARE

CHAPTER 1 LOGICAL SPECIFICATION

CPU
ROM
RAM
MEMORY STRUCTURE ,/
BANK SWITCHING ARCHITECTURE
LCD INTERFACE
PRINTER INTERFACE
CALENDAR CLOCK INTERFACE
KEYBOARD INTERFACE
SERIAL INTERFACE
CASSETTE (CMT) INTERFACE
BARCODE READER INTERFACE
INTERRUPT FUNCTION

,;MODEM INTERFACE
v'sYSTEM SLOT
·. MEMORY CONTROL CIRCUIT

PC-8300 HARDWARE

1. LOGICAL SPECIFICATION

1.1 CPU

1) CPU to be used
80C85A with operation clock 2.4 MHz

2) Reset action
Power on reset
Manual reset: "Warm Start"- pressing reset switch

"Cold Start"- pressing reset switch
while holding both the shift key
and the control key down.

1.2 ROM

1) Device
128K bytes of CMOS ROM named ROM #0 split into 4

banks of 32K byte ROM blocks. Bank switching is
performed by the I/0 port shown below.

OUT A3H
1 0

+- -· - --- ---- -- ------i=· -----+--- --+·
1--------------------------1 RADR2 IRADRl I +--------------------------+--------+------+
RADR2 RADRl Bank Selection of ROM #0

0 0 . Bank #A {00000H-07FFFH) .
0 1 . Bank #B {08000H=0FFFFH) .
1 0 Bank #C {10000H=17FFFH)
1 1 Bank #D {18000H-1FFFFH)

ROM IC ADDRESS

+----- ·----+ 00000H Device:
I Bank #A UPD23Cl000 or equivalent
+----------+ 08000H
I Bank #B
+- --------+ 10000H
I Bank #C Bank #A should be selected on
+----------+ 18000H power-on
I Bank #D
+----------+ lFFFFH

2) User ROM
One chip (32K bytes) ROM named ROM #1 can be

installed by the user in the vacant IC socket.

The software can switch between the 128K bytes of
standard ROM #0 and the 32K bytes of user ROM #1.

1.3 RAM

1) Standard RAM
8 CMOS 2K bytes chips [Standard 64K bytes (STD RAM)]

2) Option RAM
There is a 32K bytes RAM Cartridge (Bank #3) available

as an external memory upgrade. It can be connected to
the system bus of the PC-8300.

RAM #1
RAM #2
RAM #3

uPD4364G- 15LL type x4
uPD4364G- 15LL type x4
utilize PC-8206A

1.4 Memory structure

Bank 0 Bank · l Bank 2 Bank 3

FFFF +--------+ +--------+ +--------+
RAM I (Stnd 16K)

I 32K I I I I
I (STDRAM) I (Option 16K) I

8000 +--------+ +--------+ +--------+
7FFF +--------+

ROM
32K I I

I # 0 I I
0000 +--------+
switch)

Main Memory

+--------+
ROM
32K
1

+---------+
(Option}

I I
+--------+ +--------+

RAM RAM I
32K I I 32K I RAM
2 I I # 3 I Cartridge

+--------+ +--------+ (Protected by

(Option) (Option)

RAM #2 and RAM #3 can be located both in low or high
address, from 0 to 7FFFH or high address from 8000H to FFFFH.
This selection can be done by Port access.

Memory can be controlled by the following I/O port
+----+----+
11010100011 OUT AlH {161D)
+----+----+

3 2 1 0
+------+------+------+------+------+------+------+------+
l ---- I ---- I ---- I ---- I HADR I HADR l LADR l LADR l

: ---- I ---- I ---~ I ---- I 2 1 2 1
+------+------+------+------+------+------+------+------+

LADR2 LADRl Address 0000-7FFF selection
0 0 Bank #0 (ROM #0)
0 1 Bank #1 (ROM #1)
1 0 Bank #2 (RAM #2)
1 1 Bank #3 (RAM #3)

HADR2 HADRl Address 8000-FFFF selection
0 0 Standard RAM
0 1 Not used
1 0 Bank #2 (RAM #2)
1 1 Bank #3 (RAM #3)

·In case of using 128K bytes ROM cassette, the following
I/O port will be used for switching

+----+----+
11000100001 OUT 80H
+----+----+

+----- --- -- . --- - •, ---- - -----+
I l ROMSEL I Al6
+------ -------------+--------+-------+

Al6: Address 16
ROMSEL 128K bytes of ROM cartridge select

0 Deselect
1 Select

Low Address for 12SK bytes of ROM Cartridge

+----+----+
:1000i01001 OUT 84H
+----+----+

7 6 5 4 3 2 1 0
+---------------------------------------+
I A7 I A6 I AS l A4 I A3 I A2 I Al I A0 I

+----+----+----+----+~---+----+----+----+
A7 - A0 ROM cartridge low address

High Address for 128K bytes of ROM Cartridge

+----+----+
11000:10001 OUT SSH
+----+----+

7 6 5 4 3 2 1 0
+--- - ------- - --- - - -- -- ·----- - +
I A15I A14I Al31 Al21 Alli Al0l A9 I AS I
+----+----+----+----+----+----+----+----+

A15 - AS ROM cartridge high address

---~
Read Data Out of ROM Cartridge

+----+----+
11000111001 OUT SCH
+----+----+

7 6 5 4 3 2 l 0
+---------------------------------------+
I D7 I D6 I D5 I D4 I D3 l D2 I D1 I D0 I
+----+----+----+----+----+----+----+----+

D7 - D0 ROM data

PC-8300 MEMORY STRUCTURE

FFFFH +----+ +----+ +----+
IRAM
: #1

IRAM I IRAM
I #2 I I #3

8000H +----+ +----+ +----+
(STANDARD) (STANDARD) I (OPTION)

ROM #0
7FFFH +----+----+----+----+ +----+

:BANK:BANKIBANKIBANKI :ROM:
I #D I #C I #B I #A I l #1 I

+----+ I +----+
I I
I I
I I I
I I I

0000H +----+---~+----+----+ +----+ +----+ : +----+
lPC-8206A (STANDARD) (ONLY IC SOCKET)

· PC-8300 Memory Chip Allocation for Expansion

+------- -------------- ---------- ---- +
+-----+ +-----+

+--.---+
·I ·I
I I

I +-----+ -1
+,--,---+ +-----+

ROM 0 ROM 1 SW :
+---------- ------- -- - ---------------+

1.5 Bank Switching Architecture

The heart of the PC-8300A is the Intel 80C85, which is an 8-
bit processor whose address bus is 16-bit, Thus the 80C85 cart
access 64K of memory at a time. In the PC-8300A, there is a spe­
cial memory access function, memory-bank switching, supported.

_Therefore the 64K barrier in the 8-bit microprocessor can be
tricked in the PC-i300A.

The RAM in the PC-8300A is divided into units referred to as
"BANKS". One bank can contain a maximum of 32K bytes of memory,
while the RAM can be expanded to hold a maximum of three banks,
(RAM #1, RAM #2, RAM #3).

RAM #2 and RAM #3 can be located in two different positions,
lower position is from 0000H to 7FFFH and higher position is from
8000H to FFFFH. RAM #3 is a detachable RAM cartridge. The bank­
switching is executed every 32K bytes, therefore it is impossible
to access half of RAM #1 and half of RAM #2 at the same time. In
otherwords, one can not set up the following memory allocation,
the lower half of RAM #2, 8000H to BFFFH, and the higher part of
RAM #1, C000H to FFFFH as 32K of memory.

RAM #2 and RAM #3 can be protected by a. "PROTECT SWITCH".
The switch for RAM #2 is located on the rear of the computer. The
switch for RAM #3 is loca~ed on the side of the cartridge. RAM #1
does not have a protect switch. When the protect switch is ON,
the RAM bank can not be used. The PC-8300A uses the highest RAM
area, F380H to FFFH, to save the current status of the PC-8300A
every time.

All of the RAM chips are backed-up by battery. All of the
data and program files in RAM will be kept, even if the power
switch is turned off. If one makes a special utility for the 2nd
ROM or a special RAM configuration, one has to consider this
Power-down sequence. Refer to Chapter XX, to understand the
Power-off trap in ROM #0.

1.6 LCD Interface

1) Driver to be used
HD44102B (10 chips) Segment drivers

(81C55)
HD44013B (2 chips}

Display RAM= 200 bytes
Selected by Port A/B of PPI

Common drivers

2} LCD to be used
LR-202C 240 x 64 dots

3} Display function
1. No of display characters

40 characters per line by 8 lines
(Display duty= 1/32}

2. Characters structure
6 x 8 (Both alpha numeric characters and

Graphic characters}

3. LCD I/O address, I/O port
Command write in to LCD
Status read out from LCD

Display's ON/OFF
LCD can be separated by 10 blocks and can
switch display (ON/OFF) in each IC block

The LCD is divided into the following IC blocks. Each block
has its own Segment Driver with a 200 byte Display RAM. Each IC
block can display 50 by 32 dots, however BS and B10 display only
40 by 32 dots. One may write dots on the remaining area of the
Display RAM of BS and Bl0 without receiving an error, but the
dots will not appear on the screen.

+------+---- -+------+------+ -----+
Bl B2 B3 B4 BS

+------+------+------+------+----- + 64 dots
I B6 B7 I BS I B9 B10 ~
+---- -+-- . --+-· -- -+-- ---+-- ---+

240 dots

The Display RAM may be regarded as the VRAM in the tradi­
tional desk top personal computer. Setting a Bit On/Off in the
Display RAM means setting/resetting a dot on the LCD.

1.6.1 I/O PORT RELATED TO LCD

Block Select --- PPI 81C55

msb 7 6 5 4 3 2 1

PORT A/B

0 lsb

IPA71PA61PA5IPA41PA31PA2IPA11PA01

l X I XI X l XI X l X IPB11PB0l

OUT B9H (185D}

OUT BAH (186D)

PA0 to PA7 are associated to Blockl thru Block8 and PB0, PBl to
Blocks ' 9,10 respectively.

0 = Not Selected/ 1 = Select

Description: Selecting an LCD Block (same as selecting a Seg~
ment Driver IC) which one wants to •ccess. One cannot select two
blocks at a time.

1.6.2 LCD COMMAND SET

There are 5 commands to control the Segment Driver IC. These
commands are executed via PORT FEH (254D), the LCD Command/Status
Port.

Display ON/OFF

msb 7 6 5 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+------+
I 0 I 0 I 1 1 1 l 1 l 0 I 0 I DISP I
+---+---+---+---+---+---+---+------+

DISP: Display ON/OFF
0 = OFF
1 = ON

OUT FEH (254D)

Description: DISP decides whether the data in the Display RAM is
displayed on the screen. This port does not effect the contents
of the Display RAM.

Set Address Counter

49.

msb 7 6 5 4 3 2 1 0 lsb
+----+----+----+----+----+----+----+----+
IBIT71BIT61aIT51BIT4lBIT31BIT2lBITllBIT01
+-----+--~-+----+----+----+----+----+----+

Select PAGE

BIT7
0
0
1
1

BIT6
0
1
0
1

Page0
Pagel
Page2
Page3

OUT NH (24091
f~H (_Z54D)

OFn means "OFfset counter" in each Page, n must be from 0 to

The Display RAM is divided into 4 (0 to 3} pages and each
page contains 50 bytes (0 to 49) as shown below. The Segment
driver has a PAGE counter and an OFFSET counter. The eounters are
set by this command. The OFFSET counter works as the loop coun­
ter, it's valu·e from 0 to 49. The OFFSET count·er is automatically
Incremented/Decremented after read/write operation. The counter
mode is described below. The PAGE counter is ·not changed by the
read/write operation. ·

Page
counter

00B

01B

10B

llB

OFFSET Counter
0<--------------------->49 (39 if B5/B10)
+---+-------------~------+
llsbl
t I
t I Page 0
lmsbl
.+---+--------------- ----+
llsbl
I I Page 1
lmsbl
+---+---- - ---- ------ +
llsbl
I I Page 2
lmsbl I
+ --+- -- -- -- -- - ----+
llsbl
I I Page 3
lmsbl
+ -- - - ---------- . +

Set Starting Page

msb 7 6 5 4 3 2 1 0 lsb
+----+----+---+---+---+---+---+---+
ISPG1:SPG2: l I 1 I 1 I l : 1 l l I OUT J'0H (240B-t'
+----+----+---+---+---+---+---+---+ fl~ (2-6lf1>)

Specify the Starting Page to be displayed on the LCD.
(1/32 Duty)

SPGl SPG2 Order of Display Page
0 0 0 -> l -> 2 -> 3
0 1 l --> 2 -> 3 -> 0
1 0 2 -> 3 -> 0 -> l
1 1 3 -> 0 -> 1 -> 2

Description: The LCD block is. divided into 4 pages cor­
responding with the Display RAM. The combination with the Page of
the LCD Block and the Display RAM page can be changed. The "Set
Starting P~ge" def~nes the mapping betwe•n the Page in the Dis­
play RAM and the Page of the LCD Block.

Se,lect Address Counter Mode

msb 7 6 5 4 3 2 1 0 lsb
+----+---+---+---+---+---+---+---+
I 0 I 0 I 1 I l l 1 I 0 I 1 lU/D1
+---+---+---+---+---+---+---+---+

Up/Down (Direction of counter)
0 = Down count
1 = Up count

Description: Set OFFSET Counter Mode.

OUT ~0H (2409)

FEA (2..~L\b)

This address counter loops back to initial by 50 counts
and it is automatically incremented or decremented after access­
ing display data.

Read Status --- Read the status of the Segment Driver

msb 7 6 5 4 3 - 0 lsb
+----+-------+------+-----+-----+
IBUSYIUP/DOWNION/OFFIRESETIXXXXXI
+----+-------+------+-----+-----+

Bit 4
0
1

Bit 5
0
1

----- Status of the RST pin
Normal
RST is low level

Bit7 (BUSY) equals lat

----- Display
Display OFF
Display ON

Bit 6 ----- Mode of Address Counter
0 Down counter
1 Up counter

Others

IN F0H (240D"?

FEtl (2S4 0)

the same time

Bit7
0
1 · Executing in FlH, OUT F0H, or OUT FlH

Write/Read Display Data

+--+--+--+--+--+--+--+--+
ID71D61D51D4103ID21Dl1D01
+--+--+--+--+--+--+--+--+

IN/OUT ...FlH (241D)
F0ff (2.~0(>)

Description: Reads the data from the Display RAM that is
pointed to by PAGE and OFFSET counter. If one wants to read some
portion of the display RAM, use this command after Setting the
PAGE counter and the OFFSET counter by the "Set Address Counter"
command and the "Set Page Counter" command. Note that one dummy
read must be done before using this command in order to get cor­
rect data.

1.6.3 SOFTWARE FOR THE LCD

This section describes how to handle the LCD without reading
the routines stored in ROM#0 and how to maintain the bookkeeping
area for the LCD in the RAM.

1.6.3.1 How To Initialize the LCD

Initialization Process

1. Set up Address counter, us.ually page 0, offset 0
2. Set up Offset Counter Mode

·3. Set up Starting Page
4. Select Display On/OFF

The following program initializes the LCD' s Segment drivers as
shown.

PAGE COUNTER= 0
OFFSET COUNTER= 0
UP COUNTER MODE.
START ON PAGE= 0
DISPLAY ON

NOTE:
Whenever the power is turned on, the LCD is initialized by

the reset pulse of the hardware. At that time, the Display is
turned OFF, the Offset counter- is set to count up mode. Other
status is not determined.

ROM #0 always re-initializes the LCD as Display ON, Starting
Page= 0 and Offset counter count up mode when a character is
displayed.

SAMPLE PROGRAM FOR LCD INITIALIZATION

Initialize Segment Driver

Equates

PORTA
PORTB
LCDCOM
LCDSTAT

LCDINIT:

EQU B9H
EQU BAH
EQU FEH
EQU FEH

DI . Inhibit disturbance for Port I A/B
CALL SELALL . Select all Segment Drivers I

CALL LCDBUSY . Wait until LCD becomes I

XRA A .
I

OUT LCDCOM . Reset address counter I

CALL LCDBUSY .
I

MVI A, 3BH Offset counter UP mode
OUT LCDCOM .

I

CALL LCDBUSY .
I

MVI A, 3EH . Set starting PAGE = 0 I

OUT

CALL
MVI
OUT

LCDBUSY:
; Wait

SELALL:

until
IN
RLC
JC
RET

. Select all I

MVI
OUT

LCDCOM .
I

LCDBUSY .
I

A, 39H . Display ON I

LCDCOM .
I

LCD becomes ready
LCDSTAT ' ; Get LCD status

: Move MSB to CF
LCDBUSY ; Wait if LCD is

Segment Drivers
A,FFH .

I

PORTA ; B9H

busy

IN PORTB . Get current status I

* ORI 03 . Select block 9,10 I

OUT PORTB .
' RET

END

1.6.3.2 How To Write A Character

ready

Writing a character on the LCD is performed by writing some

Bit patterns into the Display RAM of the Segment Driver. The
basic sequence of writing a character on the LCD is as follows:

1. Select LCD Block (Segment Driver) which one wants to PUT
a character.

2. Set the Offset counter mode, usually to the UP mode.
3. Set the Address where the 1st byte should be written.
4. Write the Bit pattern
5. Set Starting PAGE counter
6. Insure Display ON.

The following sample program shows how to write a character
on the LCD. This routine updates the pointers which are used by
the System ROM, ROM #0, to maintain the system circumstance.

SAMPLE PROGRAM TO WRITE A CHARACTER ON THE LCD

; This program performs the same function as the following
; BASIC program • . ,
; 10 LOCATE 0, 0··
; 20 PRINT "A"
; 30 END

CSRY
CSRX
LCTEY
LCTEX
PORTA
PORTB
LCDCOM
LCDSTAT
LCDIO

LOCATE:
; Locate

PREP:

EQU F3E6H
EQU F3E6H
EQU FEB9
EQU FEBA
EQU B9H
EQU BAH
EQU FEH
EQU FEH
EQU i'010 FFH

ORG F000

0,0
LXI
SHLD
LXI
SHLD

H,0101H
CSRY
H,0000H
LCTEY

. Cursor y position (1-8) , . cursor X position (1-40) , . Cha.racter y position (0-7) , . Character X position (0-39) , . Segment Driver Select Port Dec: , . t)u: It(,, , . LCD command Port o~c 2.~&f , . LCD Status Port t>~c, 2,'I , . LCD data I/0 Port '9-tC: '2.9~ ,

; 614400

; To set cursor position . ,

Select Block 1
DI

to write (1,1)
; Inhibit disturbance for Port A/B

. ; of. the 81C55. DI is not necessary
; if the data port of the 81C55 is
; not changed, but you must consider

,~s

CHROUT:

WRITE:

. other INT routines I

MVI A,01H . Select Block 1 I

OUT PORTA ; c,,,)
(r111) IN PORTB Get current status

ANI 11111100B . Deselect Bloc;::k 9/10 I

OUT PORTB . (fi<,) I

CALL LCDBUSY ; Wait until L.Cp is ready
MVI A,0 ; Page 0, Offset 0
OUT LCDCOM . (tS&f) ,

CALL LCDBUSY ;
MVI A,00110010B ; Offset counter UP mode
OUT LCDCOM ; c~~~)

LXI H,FONTA
MVI C,06H

; Get start address of Font A
; Set Font size

; Write data to Display RAM of LCD

; ENTRY: [HL] = Font Start address
[C] = Length of Font

CALL LCDBUSY . Wait until LCD is ready ,
MOV A,M ; Get font pattern to send
OUT LCDIO ; Write to display RAM of LCD
INX H . Update Pointer ,
DCR C . Update counter I

JNZ WRITE . To send next pattern. Offset I

(1.ss')

counter . is Auto increment Mode, so we don't I . care about the Offset counter. ,
LXI H,CSRX . Update Cursor Pointer I

INR M . No check for the end of line I . in this program I

LXI H,LCTEY .
I

INR M . ,

;---- Set starting Page
MVI A,FFH ; Select all block
OUT PORTA
IN PORTB
ORI 00000011B;

LCDBUSY:

FONTA:

OUT PORTB . (,,~)
I

CALL LCDBUSY . Wait until LCD become ,
MVI A, 3FH . Starting page 0 ,
OUT LCDCOM . (:vslf) ,

MVI A,00111001B ; Insure display ON
OUT LCDCOM ; (tSLl)
EI
RET

IN
RLC
JC
RET

LCDSTAT

LCDBUSY

: Get LCD status (z,~)
Move MSB to CF . ,

Ready

DB 3CH,12H,11H
DB 12H,3CH,00H

; Font data for "A"

END

1.6.3.3 How To Set/Reset A Dot On The LCD

The sample program shown below explains how to set/reset a
dot on the LCD. it does the same function as the following Basic
program.

100 CLS
110 FOR Y=9 TO 22
120 FOR X=60 TO 80
130 PSET(X,Y)
140 NEXT X
150 NEXT Y
160 I

170 FOR Y=l4 TO 18
180 FOR X=64 TO 76
190 PRESET(X,Y)
200 NEXT X
210 NEXT Y
220 END

SAMPLE PROGRAM FOR SET/RESET DOT

PORTA EQU B9H . LCD block select I

PORTB EQU BAH .
I

LCDCOM EQU FEH . LCD command I

LCDSTAT EQU LCDCOM . LCD status I

LCDIO EQU FFH . LCD data I/O I

PSET:
DI . Disable all interrupts to keep I . current block select I

XRA A . To set SET flag I

STA SR . Set/Reset Flag ,
LXI B,140EH . [B]=20 X Count, [C]=l4 Y Count I

LXI H,0A09H . [H]=X Position, [L]=Y Position I

PSETl:
PUSH H . Save (X, Y) P'osition ,
PUSH B . Save (X, Y) Count ,
CALL MAIN . ,
POP B . Restore (X, Y) Count I

POP H . Restore (X, Y) Position ,
INR L . Advance y position ,
OCR C . Bump Y counter ,
JNZ PSETl . ,

PRESET:
MVI A,FFH . To set SR flag ,
STA SR . Set Unplot Flag ,
LXI B,0C06H . [B] =12, [CJ =06 ,
LXI H,0E0DH . {[HJ, [L])=(14,13) ,

PRESETl:
PUSH H . Save X,Y Position ,
PUSH B Save X,Y Counter
CALL MAIN . ,
POP B . Restore X,Y Counter ,
POP H . Restore X,Y Position ,
INR L . Advance y position ,
DCR C . Bump Y counter ,
JNZ PRESETl . ,
RET . ,

MAIN: . [H] = X POSITION , . [L] = y POSITION , . [B] = X COUNT , . [C] = y COUNT ,

PUSH H . Save X,Y Position .,
CALL DOT . Plot/Unplot a dot at (X, Y) ,
POP H . Retrieve Position , .
INR H . Advance X Position I

OCR B . Bump X counter ,
JNZ MAIN . ,
RET

DOT:
CALL LMAIN . ,
LOA SR . Get SR flag ,
ORA A . See if Set/Reset? ,
JNZ RESET . Branch if Reset ,
MOV A,E . Get MASK pattern ,
ORA D . [A]= data to write ,
JMP DISP . ,

RESET:
MOV A,E . Get MASK pattern ,
XRI FFH . Reverse MASK pattern ,
ANA D . [A]= data to write ,

DISP:
MOV D,A . ,
CALL WRITE
DI . ,
MVI A,FFH . Select all blocks ' OUT PORTA . ,
IN PORTB . ,
ORI 00000011B . ,
OUT PORTB . ,
CALL LCDBUSY • See if LCD is busy ,
MVI A,0011llllB . Starting Page 0 ,
OUT LCDCOM . ,
CALL LCDBUSY
MVI A,00111001 . Display ON ,
OUT LCDCOM .

I

EI .
I

RET . ,

LMAIN:
ENTRY [H]= X Position in Block-1

[L]= Y Position in Block-1
; REG:

WRITE:

PUSH
PUSH
CALL
CALL
CALL
POP
CALL
POP
CALL
RET

H
H
SEL2 ·
SETADR
READ
H
GETMSK
H
SETADR

; Save X,Y position . ,
; Select Block-2
; Set address of display RAM

; Read the LCP
; Retrieve X,Y position
; Get MASK pattern

; Retrieve (X,Y) position

FUNC: OUTOUT [ODAT] TO LCD

; REG: A AND FLAGS

CALL LCDBUSY
MOV A,D ; Get Data to write
OUT LCDIO
NOP ; Must be EI at final
RET . ,

READ:

; ENTRY: NONE

EXIT: [D]=CURRENT DATA IN DISPLAY RAM

REG: A,D AND FLAGS

CALL LCDBUSY ; Wait until LCD becomes ready

IN LCDIO

CALL LCDBUSY
IN LCDIO
MOV D,A
RET

GETMSK:
ENTRY: (L]= Y POSITION . , . EXIT: [E]= MASK PATTERN ,

; REG: A,L,E AND FLAGS

MOV A,L
ANI 00000111B
MOV L,A
MVI A,~

1JOH
MSKl:

RLC
DCR L
JP MSKl
MOV E,A
RET

SETADR:

; Dummy read-must do to get
; correct data

; Get valid data
; Save it

; Get Y position

; Set counter . ,

; Bump counter
; Branch if not finished
; Save Mask pattern . ,

; ENTRY: . [H] = X POSITION ON BLOCK-2
; [L]= Y POSITION ON BLOCK-2
; FUNC: SET ADDRESS

: REG: A,H,L AND FLAGS

MOV A,L . Get Y position ,
RAL . Move Bit4/3 to Bit7/6 ,
RAL . ,
RAL . ,
ANI 11000000B . Get page ,
ORA H . [A]=Page and Offset ,
MOV L,A . Save it. ,
CALL LCDBUSY . Wait until LCD is ready ,
MOV A,L . Retrieve address ,
OUT LCDCOM . ,
RET

LCDBUSY:
ENTRY: NONE . ,
FUNC: WAIT UNTIL LCD IS READY

; . EXIT: NONE ,
;
; REG: A AND FLAGS

IN LCDSTAT . Get LCD status ,
RLC . Set Busy FLG to CF ,
JC LCDBUSY . Wait if LCD is Busy ,

RET . ,

SEL2:
SELECT BLOCK-2

;
REG: A AND FLAGS

DI . ,
MVI A,00000010B . Select Block-2 ,
OUT PORTA . ,
IN PORTB . ,
ANI 11111100B . ,
OUT PORTB ;
RET . ,

SR: DB 00 . Set/Reset flag I . 0=Set/FF=reset ,

END

HOW TO DEFINE A CHARACTER

This section describes how to define the User Definable
characters in the PC-8300A and how to store them in a portion of
RAM where ROM #0 can use this new font. BASIC commands will be
used to produce some of the operations.

STRUCTURE OF A CHARACTER AND HOW TO DEFINE IT

One character consists of 6 * 8 dots. The vertical 8 dots are
handled by a byte. In order to define a character, one must
define Sequentially the 6 bytes of data. The data 7CH (124D), 12H
(18D}, llH (17D), 12H (18D), 7CH (1240), and 00H (0D) define "A"
as follows.

CG pattern for "A"
DB 7CH,l2H,llH,l2H,7CH,3CH,00H

DATA PATTERN
0 l 2 3 4 5

lsb +---+---+---+---+---+---+
0 I 0 I 0 I l I 0 I 0 I 0 I

+---+---+---+---+---+---+
1 I 0 I 1 I 0 I 1 I 0 : 0 I

+---+---+---+---+---+---+
2 I 1 : 0 I 0 I 0 I 1 I 0 I

+---+---+---+---+---+---+
3 :1:0:010:1:01

+---+---+---+---+---+---+
4 I 1 : 1 I 1 I 1 I 1 I 0 I

+---+---+---+---+---+---+
5 : 1 I 0 I 0 I 0 I 1 I 0 I

+---+---+---+---+---+---+
6 : l I 0 I 0 I 0 I l I 0 I

+---+---+---+---+---+---+
7 I 0 I 0 I 0 I 0 I 0 I 0 I

msb +---+---+---+---+---+---+

HOW TO STORE ONES OWN CG

FONT PATTERN
0 l 2 3 4 5

+---+---+---+---+---+---+
I * I

+---+---+---+---+---+---+
I * I I * I

+---+---+---+---+---+---+
I * I I * I

+---+---+---+---+---+---+
: * : : * :

+---+---+---+---+---+---+
l*l*l*l*l*I

+---+---+---+---+---+---+
I * I I * I

+~--+---+---+---+---+---+
I * I I * I

+---+---+---+---+---+---+

+---+---+---+~--+---+---+

This section explains how to store USER CG into RAM, which
can also be used by ROM #0.

Assume that one has to define fonts as described in the
previous section. Each Font consists o~ 6 bytes. Font Data has
been BSAVEed in the RAM file named "FONT.CO", whose start address
is YYZZH.

One can make "FONT.CO" in the following sequence.

1. Reserve area for "FONT.CO" by the CLEAR command in
BASIC.

CLEAR <length>,<startaddress>

2. Load "FONT.CO" into RAM

BLOAD "FONT"

3. Register the top address of the CG

POKE 65216D,<Start Address (High Byte}>
POKE 65215D,<Start Address (Low Byte)>

After this sequence, ROM #0, for inst~nce, BASIC can use the new

defined CG.

AVAILABLE SYSTEM WORK AREA

This section explains how to use the system Character
Generator and how to use the available System work area.

HOW TO USE THE CG IN THE SYSTEM ROM

One miqht want to use the CG of ROM #0 instead of making a
new CG by yourself. The Character Generator characters whose code
is from 20H to 7EH, are stored in the highest portion of ROM #0,
from 78B7H to 7B37H. Each character consists ofS bytes. The
sample below explains how to get the character pattern and how to
expand it into the standard shape, 6 * 8 pixels. Assume that this
program is written to be stored as a CO file in the RAM files and
will be executed with ROM #0.

;ENTRY [A]= character code (20H TO 7EH}

EXPAND:
SUI A,20H . ,
MOV C,A . ,
ADD C . *2 ,
ADD A . *4 ,
ADD C . ,
MOV C,A . [C] offset from base of CG ,
MVI B,00H . ,
LXI H,CGADR . ,
DAD B .

I

LXI B,TEMP . ,
MVI D,SH . Set font data length ,

NEXT:
MOV A,M . Get font data ,
STAX B . ,
INX H . ,
INX B . ,
DCR D . ,
JNZ NEXT .

I

ORA A .
I

STA TEMP+S . ,
RET

VRAM AREA IN THE SYSTEM WORK AREA

The area from FBC0H to FE3FH in the RAM is reserved for VRAM
area of the LCD. It is divided into two portions. Each portion
can hold the character codes displayed on the led at a time. Each
portion has 320 bytes. The attribute data is not saved in this
area, only the character code is stored.

1. FBC0H - FCFFH

2. FD00H - FE3FH

; Keep previous Page
; in TELCOM

; current displayed
; character is saved

The character code of the character displayed at the location
{1,1) on the LCD display is stored at FD00H.Therefore the code of
the left-lowest character {40,8) is stored at FCJFH. This rule is
used in the standard program in ROM #0. For instance, BASIC,
TEXT, TEXT, TELCOM use that area like a VRAM in the traditional
desk top personal computer. The menu screen also utilizes that
area, but you can use the area too. The data in this area does
not effect the information on the LCD display, as far as you use
your own display routine.

REVERSE THE ATTRIBUTE OF THE SPECIFIED AREA

ROM #0 has the reverse attribute table in the Work area. ~he
attribute data is kept in the area from FA60H (64096D) to FA87H
{641350). Each bit represents each character Box on the LCD.
Therefore only 40 bytes can handle the attribute of the whole LCD
screen. When the bit is OFF (0), it shows that the character Box
is displayed in normal mode. Likewise when the bit is ON (1), the
character box is displayed in reverse mode. The relation between
the Attribute bit and the Character Box is shown below. The rela­
tion of the reverse attribute bit and each character box follows.

+ ----~ ------------ ------ ---- -- ------·--+
I (1,1) I (2,1) I (3,1) l I (39,1) l (40,1} I
+------------ - +---- - ------ ---- - -- -- -+
I (1,2) I (2,2) l (3,2) l I (39,2) l (40,2) I
+------------- ----- --------------.----------+

+------------------------------ --- . ------ --+
I (1,8) I (2,8) I (3,8} l l (39,8} l (40,8) I
+---~---+

FA60H Bit0 (01,1)
Bitl (02,1)
Bit2 (03,1)
Bit3 (04,1)
Bit4 (05,1)
Bit5 (06,1)
Bit6 (07,1}
Bit7 (08,1)

FA61H Bit0 (09,1)
Bitl (10,1)

FA87H Bit0 (33,8)
Bitl (34,8)
Bit2 (35,8)
Bit3 (36,8)
Bit4 (37,8)
Bit5 (38,8)
Bit6 (39,8)
Bit7 (40,8)

1.5 Printer interface

Printer interface ~s the 8 bit parallel interface The
Centronics compatible interface on the PC-8300A uses a 26-pin.
The following is the I/0 port of the printer interface. It sets
the data on the port A of 81C55 and inputs the control signal
from the printer to port c. Port A takes output. Port C takes in­
put.

I/0 Port For Printer Interface

Port A--- Data transmission (OUTPUT) to printer

lsb 7 6 5 4 3 2 1 0
+----+----+----+----+----+----+----+~---+
IPD7 IPD6 IPDS IPD4 lPD3 IPD2 IPDl IPD0 l OUT B9H (185D)
+----+----+----+----+----+----+----+----+

Bit 7 -- Bit 0 Printer data port

Port C--- BUSY, SLCT Signal Read

msb 7 6 5 4 3 2 1 0 lsb
+-----+~---~+-~---+---~-+-----+---~-+-----+---~-+
I XXX · 1 XXX l ~ I XXX I XXX l·BUSY I SLCT I XXX

(187D)
+-----+-----+-----+-----+-----+-~---+-----+-----+

BUSY 0 Printer READY
1 Printer BUSY

SLCT 0 Deselect
1 Select

SCP (System Control Port) --- STROBE Output Port

msb 7 6 5 4 3 2 1 0
+---+---+------+---+---+---+---+---+
I - I - l PSTB I - I - I - I - I - I OUT 90H
+---+---+------+---+---+---+---+---+

PSTB ---- 0 Strobe OFF
1 Strobe ON

BASIC THEORY OF WRITING DATA TO CENTRONICS

IN BBH

The basic sequence to write data to the Centronics printer is

as follows.

1. If the Printer is busy, wait a while. Otherwise go ahead.
2. Output a byte to the data line and hold it.
3. Change the strobe level to low.
4. Wait an adequate duration holding the DATA.
5. All has been done, then finish else repeat from (1).

TIMING CHART

Parallel
DATA

_xxxxxxxxxxxxxx ____ _

DATA
STROBE

BUSY

->lTll<- ->l T2 l<-
--- ---+ +-- ----------- - -----

->I T3 l<-
+-----+

+--------------+
--------------+ +-----

Tl, T2 >= 1.0 uSec
1.0 uSec < T3 < 600uSec

Refer to the printer manual for the actual duration of Tl to T3.

SOFTWARE SPECIFICATION

HOW TO WRITE A BYTE TO THE PRINTER

The program below explains how to send a character to the
Parallel port(the same as the BASIC command LPRINT "ABCDEFGHIJ").

600000
;--EQUATES--
SCP EQU
PORTA EQU
PORTC EQU
SYSSTAT EQU

90H
B9H
BBH
FE44H

System Control Port
; Printer Data Port
; Printer Status Port
; SCP status

START:
LXI H,BUF . Set PTR ,
MVI C,10+2 ; Set data length

PRINT:
IN PORTC . Get printer status ,
ANI 6 . Strip BUSY,SLCT bits ,
XRI 2 . See if ready ,
JNZ PRINT if not, then ·wait
DI . Inhibit disturb for PortA ,
MOV A,M . Get character to print ,
OUT PORTA . Put data on the DATA line ,
LDA SYSSTAT ; Get SCP status
MOV B,A . Save it ,
ORI 00100000B . Set STROBE ,
OUT SCP . ,
MOV A,B . ,
OUT SCP . ,
MOV B,03H . Set appropriate value for ,

;.specific printer
WAIT:

DCR B . ,
JNZ WAIT . ,
EI . ,
INX H ; Point to next
DCR C . ,
JNZ PRINT . ,
RET . ,

BUF: DB 'ABCDEFGHIJ'
DB 13,10

END

1.6 Calendar clock interface
It contains LSI (uPD1990AC) for clock. The following I/O

ports are assigned.

Command data out port
+----+----+
Il0llI1001I OUT B9H (185D)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+-----+-----+----+----+----+
I - I - I - I CD0 I CCK I C2 I Cl I C0 I

+---+---+---+-----+-----+----+----+----+

C2,Cl,C0

CCK

Command out port

Shift clock
0 OFF
1 ON

CD0 Data out port
Starting value is 05H

Command strobe to clock
+----+----+
I1001I0000I OUT 90H (144D)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+------+---+---+---+---+
I - I - I - I TSTB I - I - I - I - I
+---+---+---+------+---+---+---+---+

TSTB
0
1

Command strobe to clock
Strobe OFF
Strobe ON

Data from clock
+----+----+
I1011I1011I IN BBH (1870)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+-----+
I - I - I - I - I - I - I - I CDI I
+---+---+---+---+---+---+---+-----+

CDI Clock data input data

1.7 Keyboard interface

Keyboard is sensed by the soft scan method. It outputs Low
signal to port A (of 81C55) and a part of port B {PB0) in order
(OUT B9,OUT BA). It sense the pressed key in IN ESH.

PC-8300A KEYBOARD MATRIX

Keyboard Data Port

KD0 KDl KD2 KD3 KD4 KD5 KD6 KD7
I Key Strobe Port

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +--~+
I Z l-l X 1-1 C l-1 V 1-1 B 1-1 N 1-1 M 1-1 L I-- PA0

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
i A 1-1 S 1-1 D :-: F 1-1 G 1-1 H 1-1 J 1-1 KI-- PAl
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +•--+
I Q 1-1 W :-: E 1-1 R 1-1 T 1-1 Y 1-1 U 1-1 I l-- PA2
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

I I I I
I I I I

+---+ +---+ +---+ +---+ +---+ +---+ +---~ +---+
I O I_ I P I_ I " I_ I I I_ I < I_ I > I_ I ? I_ I l I_ PA3

I llllall\11 11 11/11)1
I I I 11111 I I I I I I I • I I I I I

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
: ! I_ I " I _ I # : _: $ l _ I % I_ I & I_ I I l _ I (I_ PA4
111121131141151161171181
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

I
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
I (1_1 _ I_I + l_l * l~I = 1_1 { I_ISPCI_IPSTI_ PAS
I 9 l : 0 I I ; I I : I I - I I (I I INS l
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

I
·I

I
I·

I
• I

+---+ +---+ +---+ +---+ +---+ +---+. +---+ +---+
IDELI_I " 1_1 I l_J 1_1 l_lTABI_IESCI_IRETl_ PA6
I BS l l l I I V I I<- I I-> I I I I
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

+---+ +---+ +---+ +---+ +---+ I +---+
IF-11-IF-21-IF-31-IF-41-IF-51---------+---ISTPI-- PA7
+---+ +---+ +---+ +---+ +---+ +---+

I I
+---+ +---+ +---+ l +---+ I
ISFTI-ICTLI-IGRHl-~-----ICAPI---------+-----+---- PB0
+---+ +---+ +---+ +---+

The abbreviation PAn (PA7,PA6, .•. ,PA0) and PBn mean the bit
of PORT A and B of the 81C55. Please refer to the following sec­
tions about the I/0 ports. Also, KDn (KD7,KD6, ... ,KD0) represent
the bit of the KEYIN, Input port for the keyboard.

I/0 PORT FOR THE KEYBOARD

KEYBOARD STROBE ----Port A/B of the 81C55

msb 7 6 5 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
IKS71KS61KS5lKS4IKS3IKS2lKSllKS01 OUT B9H (185D)
+---+---+---+---+---+---+---+---+
: XI XI XI X IX I XI X IKS8l OUT BAH (186D)
+---+---+---+---+---+---+---+---+

KS8 ..• KS0 KEYBOARD Strobe

0 = Strobe OFF
1 = Strobe ON

KEYIN ---- Read Keyboard Data

msb 7 6 5 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
IKD71KD6lKD5lKD4lKD3lKD2lKDllKD01 OUT EBH (235D)
+---+---+---+~--+---+---+---+---+

KD7 ... KD0 KEYBOARD Data
0 = Depressed
1 = Not Depressed

Read the strobed column of the keyboard. Please refer to the
Key Matrix shown earlier to 'understand the relationship between
KDn and the Key on the Keyboard.

KEYBOARD SCANNING

Key scanning must be performed by software. It can be done
by the interrupt, RST 7. 5., the RST, 7. 5 Pin• of the 80C5~ is con­
nected to the TP Pin (No. 10) of the calendar clock (uPD1990).
This interrupt occur• every 4 msec in the standard system.

SOFTWARE FOR KEYBOARD OPERATION

HOW TO READ THE KEYBOARD

Basic keyboard sequence:

1. Turn on the strobe to the desired column you want to
read.

2. Read the column from the KYIN port.
3. Strobe OFF.

The following sample program shows how to read the keyboard in
detail. The program reads every column and saves the data into
the KYBUF (Keyboard Buffer).

Read Current Keyboard Status

Note: Make sure Keyboard strobe is
not disturbed while reading the keyboard.
Also take care of the other interrupts.

EQUATES
-..... _,

PORTA EQU
PORTB EQU
KEYIN EQU

ORG
READKEY:

LXI
MVI
OUT
IN
ANI
OUT

key
IN
STAX
IN
ORI
OUT
MVI

B9
BA
ES

F000H

B,KYDATA
A,FFH
PORTA

PORTB
FEH
PORTB

KEYIN
B

PORTB
01H

; Keyboard strobe Port

; Keyboard data port

; Get PTR for buffer
; Disable normal key strobe

; Get PortB Status
; SET B0 = OFF
; Activate Strobe for Special

Read keyboard
; Save data

Port B ; Get status of
; SET B0 = ON
;Strobe off PORTB

A,11111110B

NOMAL:
INX B . Prepare PTR for key , . buffer for next data ,
OUT PORTA . Strobe on ,
MOV D,A . ,
IN KEYIN . Get data ,
STAX B . Store it ,
MVI A,FFH .

I

OUT PORTA . Strobe off ,
MOV A,D . Retrieve strobe data ,
RLC Strobe for next column
JC NOMAL
RET . All done return to caller I

KYDATA: DS 1 . PB0 column I

DS 1 . PA0 ,
DS 1 . PAl ,
DS 1 . PA2 ,
DS 1 . PA3 ,
OS 1 . PA4 ,
OS 1 . PAS ,
DS 1 . PA6 ,
OS 1 . PA7 , . Be careful that Bit OFF , . means key is depressed ,

END

1.8 Serial interface

The PC-8300A has three channels of Serial Interface, RS-
232C, SIOl and SI02. UART (6402) and PPI (81C55) control the
Serial Interface. Since they are shared by 3 channels, only one
channel is available at one time.

I/0 PORT

CHANNEL SELECT -- (System Control Port)

I/0 Address and Data Pattern

msb 7 6 5 -- 0 lsb
+----+----+-------------------+
lSRI2lSRill XXXXXXXXXXXXXXXXX I
+-- -+----+--------------- ---+

SRI 2/1 Ser3:al Interface Select

SRI2 SRil USER
0 0 ----- Not used
0 1 ----- SIO 1
1 0 ----- Floppy disk
1 1 --·--- RS-232C

OUT 90H (144D)

(SIO 2)

NOTE: The current status of this port is saved in
SYSSTAT (FE44H) by the System ROM.

UART MODE CONTROL

msb 7 - 5 4 3 2 1 0 lsb
+-------+----+----+~---+---+---+
I XXXXX ICLS2ICLSll PI IEPEISBSI
+-------+----+----+----+---+---+

SBS Stop bit select

0 1 bit
1 2 bits (*)

OUT D8H (216D)

(*) When data length is 5 bits,
stop bits is 1.5 bits.

EPE Even Parity Enable
(meaningless if PI= 1)

0 Odd parity
1 Even parity

PI Parity inhibit

0
1

Parity enable
Parity disable

CLS2/CLS1
0 0
0 1
1 0
1 1

Character Data Length
5 bits
6 bits
7 bits
8 bits

UART STATUS READ

I/0 ADDRESS AND DATA PATTERN

msb 4 3 2 1 0 lsb
+------+----+----+----+----+------+
I XXXX ITBREI PE I FE I OE ldcd/drl IN DBH {219D)
+------+~---+----+----+----+------+
dcd/dr DCD/DR {0=on/l=off)

OE Over-run Error (l=Detected)

FE Framing Error (l=Detected)

PE Parity Error (l=Detected)

TB;RE Transmit Buffer Register Empty
l=ready to receive data to transmit

Set UART Baud Rate (PPI 81C55 Timer Section)

I/0 Address and Data Definition

msb 7 6 5 4 3 2 1 0 lsb
+-----+-----+-----+-----+-----+-----+-----+-----+
I Ml I M2 I Tl3 I T12 I Tll I T10 I T09 I T08 I OUT BDH

(189D)
+-----+-----+-----+-----+-----+-----+-----+-----+
I T07 I T06 I T05 I T04 I T03 I T02 I T01 I T00 I OUT BCH

(188D)
+-----+-----+-----+-----+-----+-----+-----+-----+

Ml/M2 Specify timer output mode

00B = Single Square Wave
01B = Continuous Square Wave
10B = Single Pulse On
llB = Continuous Pulse

Note:
To set a Baud Rate use the values below.

+---- --- ·-+- -------+-- - - - +
I Baud Rate l BCH BOH
+-----------+--- -----+- --- -- +

75 00 48
+-- - ------+-------- +- '---- +

150 6B 45
+-----------+---------+---------+

300 00 42
+-----------+---------+- ~ -----+

600 00 41
+-----------+---------+---------+

1200 80 I 40
+-----------+ --- ---+--------·+

2400 40 40
+-----------+-- . --- -+-------- +

2400 I 40 40
+-- -----· -+- --- ---+---------+

4800 20 I 40 I
+-----------+------ --+- -------+

9600 10 I 40
+----------~+-~-------+---------+

19200 08 40
+-----------+---------+---------+

Note:
It is impossible to read the current UART status directly.

ROM #0 always saves the new status in RAM when it is changed.

UART DATA I/0 PORT

I/0 Port and Data Pattern

msb lsb
+--+--+--+--+--+--+--+--+
1D71D61O51D41D31D21D11O01
+--+--+--+--+--+--+--+--+

IN/OUT CBH (203D)

If the data length is less than 8 bits, the output data must
be right justified. Input data is right justified by the UART.

SOFTWARE DESCRIPTION

How to Initialize the Serial Port

The basic sequence to initialize the Serial Port is as fol-
lows.

1. Select Channel

2. Set Baud Rate

3. Set transfer mode.

The following sample program shows. the initialization sequence
more detailed.

the program explains how to initialize the serial port. This
sample program initializes the RS-232C Channel to: 9600 bps, even
parity, 7 bit data length, 1 stop bit, and no control for
Xon/Xoff or SI/SO. The program updates the work area for ROM #0.
One may skip that portion because there will be no proble~, even
if updating the data is skipped. ROM #0 always initializes the
RS-232C Port when entering Terminal mode or "OPEN COM:" of Basic
command issued by the Mode string.

Sample Program to Initialize the Serial Port

Data in the system work area must be updated

SERMOD

INHDSP
INHIBIT
COMACT

SYSSTAT
BAUDRT
address
INHBIT

EQU

EQU

EQU
EQU

EQU

F406H
F406H
F407H
F408H
F409H
F40AH
F40BH

FE43H

FE44H
FE4AH

FE41H

; I/O PORT AODRESS .
I

SCP EQU 90H
PORTB EQU BAH
TIMEL EQU BCH
TIMEH EQU BDH
RTSDTR EQU 3FH

INITSERI:
; ENTRY: [C] = USER ID

; 6 bytes for MODE string
Baud rate specifier

; Parity mode
; Word length
; Stop bits
; XON/XOFF control
; SI/SO control

; current user ID for
; serial port.
; 00B = Not used
; 01B = SI02
; . 10B = SIOl
; llB = RS-232C

; SCP port status
; Baud rate Table entry

; 0 inhibits XON/XOFF control

; System Control Port
; RTS/DTR set port
; Timer set Low
; Timer s.et High
; RTS/DTR data for RS-232C

; Use FFH for SIOl/2

[B] = BAUD RATE SPECIFIER. ASCII NUMBER
SAME NUMBER "STAT" AS TELCOM

(1 TO 9)

; --See if Serial Port is available

LDA
ORA
JZ
CMP
JZ
STC
RET

COMACT
A

SELECT
C

SELECT

; Get current user ID
; No one use Serial I/0?

; then branch
; Same User?

; Then branch
; Set Error Flag
; Return to caller

SELECT:

reset

of

RESERVE SERIAL PORT
DI
HOV A,C
STA COMACT

; Inhibit all disturbance
; Get User ID

Set user ID. Be sure to

; the User ID to 00 after all

; tasks are ~inished,else the
; serial port can not be shared

RRC
RRC
HOV
LDA
ANI
ORA
OUT
STA . , . --Set BAUD ,

SETBAUD:
HOV
STA
SB!
RLC

LXI
HOV
MVI
DAD
SHLD

ROM #0

tializes

HOV
OUT
INX
HOV
OUT
MVI
OUT

timer

RATE

C,A
SYSSTAT
00111111B
C
SCP
SYSSTAT

A,B
SERMODE
ff 1 II

H,TIMTBL
C,B
B,0
B
BAUDRT

A,M
TIMEL
H
A,M
TIMEH
A,C3H

BSH

; SET TRANSFER MODE
MODE:

IN
ANI

OUT

PORTB
RTSDTR

PORTB

; with another- user.
_ ; Move Bit0-1 to Bit 6-7

. ,

. ,
; Save it

; Get current SCP status
; Cancel channel control

; Set new channel control bits
; Select channel

; Update SCP status

; Get Baud Rate ID
; Update Baud Rate Specifier

; Convert to Binary Number
; *2, because table entry is

; 2 bytes
• ,

; [C] = off set . ,

; Save entry point for music
; routine. Music routine in

; destroy temporary changes
; the timer count and reini-

; it with this entry data
; after finished.

; Get lower value . ,
; Get higher Value

; To start timer
; Use this value to start

If RS232C RTSDTR=3FH to
; activate RTS/DTR
; else FFH to unactivate

IN

MVI
OUT

CSH ; Dummy read to clear
; receive buffer register

A,00001110B ; 7bit, even paritY,1 stopbit
0D8H ; Set mode

; --Update SERMODE
LHLI
MVI
INX
MVI
INX
MVI
INX
MVI
INX
MVI
XRA
STA
EI
RET

TIMTBL:

SERMODE+l
M, ''E"
H
M, "7"
H
M,"l"
H
M, "N"
H
M, "N"
A
INHIBIT

.
'
.
' . . '

.
' .
' . ,
.
' .
' .
' .
'

.
' Set

Set

Set

Set

Set PTR
parity check mode

Word length

Stop bit length

XON/XOFF control mode

; Set SI/SO control mode
; Set CF=0

. ,
; Dj,sab1e XON/XOFF control

75
150
300
600

1200
2400
4800
9600

DB
DB
DB
DB
DB
DB
DB
DB
DB

00H,48H
6BH,45H
00H,42H
00H,41H
80H,40H
40H,40H
20H,40H
10H,40H
08H,40H ; 19200

bps
bps
bps
bps
bps
bps
bps
bps
bps

SEND DATA TO THE SERIAL PORT

The sample program below describes how to send data to
the serial port. It performs no XON/XOFF and no SI/SO control.

; SEND DATA TO THE SERIAL PORT

; ENTRY: [C] = DATA TO BE SENT

WRITE:
IN DSH .

' CPI 00010000B

JZ WRITE .
' MOV A,C

OUT C8H
RET

Get UART status
; See if transmitter buffer
; register is empty

Wait until TBR becomes empty
; Get a character to send
; Send it out the serial port

.READ DATA FROM THE SERIAL PORT

The sample program below explains how to read data from
the serial port by usirtg RST 6.5. This program only reads data
from the serial port with RST 6.5, no XON/XOFF and no SI/SO con­
trol is performed.

** Read data from the Serial Port using RST 6.5

RST65:

READ:

BUFFER

ORG
DI

JMP
ORG

PUSH
PUSH
PUSH
PUSH
IN
MOV
IN
ANI
MOV
SHLD·
POP
POP
POP
POP
EI
RET

DS
DS

3CH

READ
????

H
D
B
PSW

CSH
L,A

DSH
00001110B
H,A
BUFFER
PSW

1
1

B
D
H

; Entry point of RST 6.5 . ,

; Save all registers

; Read the data
; Save it

; Get error status
; Strip error bit

; Restore registers

. ,

; Got data
; Error status

AVAILABLE SYSTEM AREA

You may want to use th system area for your own use. In this
section, the available work area of ROM #0 is described. Make
sure to keep the compatibility with the system ROM #0, if you
want to use this area. ·

The Serial Input Buffer from FE4CH (65100D) to FFC3H
(65475D), is reserved by the system ROM, but you can use it for
your own routines.

SERMOD saves the RS-232C mode string.

This area has six bytes which indicate the RS-232C string
mode, specified by the "STAT" command in TELCOM or OPEN "COM: ''
command · in Basic. The contents are as follows:

SERMOD at F406H (62470D): RS232C String mode buffer

F406H
F407H
F408H
F409H
F40AH
F40BH

; Baud rate specifier (1 to 9)
; Parity Mode (N/E/0/I)
; Word length specifier (5 to 8)
; Stop bit (1/2)
; Xon/Xoff control (X/N)
: SI/SO control (S/N)

INHIBIT at FE4~H (65090D)
This byte is the XON/XOFF Inhibit Flag. 0 inhibit XON/XOFF

control, else enabled.

COMMACT at FE43H (65091D)
This byte indicates who is using the serial port. Make sure

to reset to 0 after using the serial port, otherwise the
serial port is not available for another user.

00H = No user
01H = SIO2
10H = SIOl
03H = RS-232C

CMPNT at FE46H (65094D): Character count in Buffer
This byte has the character count in the serial buffer.

REDADDR at FE46H (65094D)
This byte indicates the last read character displacement.

WTADR at FE47H (65095D)
This byte indicates the last written character displacement.

BAUDRT at FE4AH (65098D)
this points to the table of the Baud rate.

1.9 CASSETTE (CMT) INTERFACE

Cassette interface uses the SID (Serial Input Data) pin of
80C85 and the SOD (Serial Output Data} pift. The Motor is con­
trolled by the SCP (System Control Port, 90H). The on-bit, Logi­
cal High, is represented by 2400Hz wave (called MARK) and the
off-bit, Logical Low, is 1200Hz wave (called SPACE). So the baud
rate of the CMT can be up to 1200 bps, bits per second (the sys­
tem ROM #0, uses 600 bps to maintain the compatibility with the
PC-8001A). The physical interface of the CMT is described in this
chapter. Information on how to control the Motor of the CMT, how
to write data to the CMT and how to read data from the CMT. For
information on File Format please refer to Chapter XX.

WRITING OPERATION

While SOD is high, MARK is put out to MIC and TxC. Other­
wise, SPACE is put out. Refer to the next illustration.

SIC
high

low

MIC/TxC

+-------+ +--~----+ +----,-----

+-~-----+ +-------+

I I I I I
I <MARK > I <SPACE> I <MARK > I <SPACE> I <MARK>

READING OPERATION

Input wave from EAR Pin is reformed to Square wave and sent
to SID Pin of the 8~C85 as shown below. The input wave is in­
verted on the way to the SID Pin from EAR Pin. In the reading
operation, the electric high/low level has no meaning. The pulse
frequency indicates whether high or low data. The frequency,
2400Hz means logical high and the frequency 1200Hz means low .

EAR-----

SDI-----

I<-- MARK --->I<--- SPACE ----->I

-+ +-+ +-+ +-+ +--+ +--+ +--+ +---
1 I I I I I I I

I I I I I I I

+-+ +-+ +-+ +-+ +--+ +--+ +--+
2400Hz 1200Hz

I/0 PORT FOR CMT

SCP System Control Port

msb 7 6 5 4 3 2 l 0 lsb
+---+---+---+---+--------+---+---+---+
I - I - I - I - I REMOTE I - I - I - I
+---+---+---+---+--------+---+---+---+

REMOTE CMT Motor Control
0 = CMT Motor OFF
l = CMT Motor ON

OUT90H (144D)

Description: The current status of this port is saved
at SYSSTAT (FE44H), so you have to update this area when you want
to change the status of this port.

PPI 81C55 Cornman~ Set

msb 7 6 5 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
ITM2ITM1I 0 I 0 I? I? I 1 I 1 I
+---+---+---+---+---+---+~--+---+

TM2/1

TM2 TMl
0 0
0 l

Timer Command for PPI

NOP
Stop

OUTBSH (1840)

1 0
1 1

Stop after Terminal Count
Start

BAUD RATE GENERATION

The Baud Rate is generated by the software timing routine.
In the writing operation, the bit data for the SOD Pin is set and
it is held during the proper duration by the software wait­
routine. On reading, a data bit is read in the proper interval
which is controlled by software. The CPU uses a 2.4576MHz clock,
so the time of 1 bit output/input should be counted with this
clock. The sequence of the counting operation is shown below.

+--------------+----------~--------+
BAUD RATE I NUMBER OF STATE

for 1 bit
+- ------- --- +------------------ +

75 bps 32448
+ ---·-·- . -- -+-------------------+
I 150 bps 16224 I
+- -------- - -+----- --- . --- - - +

300 bps 8112
+ ---- - ---- +- -----------------+

600 bps 4056
+--------- ·--- +---- -------- ----+

1200 bps 2028
+--------------+-------------------+

WRITING DATA TO THE CMT

Writing data to the CMT is performed by controlling the SOD
pin. The following program illustrates how to write a byte to the
CMT.

; Write a byte to the CMT, the lowest routine

; Assumption:
CMT Motor is rotating regularly and CALLED
by the Interrupt Disable

; INPUT: [A] = Data to be sent

OUTPUT: None

; BAUD Rate= 600 bps

WRITE:
MOV B,A
MIV A, 50H
SIM

. , . ,
;

4: Save Data
7: Write start
4:

bit

CALL HOLD . 18: Wait 4043 State ,
IN PORTC . 10: Dummy to adjust timing ,
MOV C,08H . 4: Set data length in bit I

BYTEO:
MOV A,B
RLC
MOV B,A
MVI A,D0H
JC BITO
MVI A,50H

BITO:
SIM
CALL HOLD
OCR C
JNZ BYTEO
MVI A,D0H
RET

; HOLDl GIVES
24 * [HL} + 7 {+18)

; 4: Retrieve data
; 4: Set a bit in CF
; 4: Save data
; 7: To send MARK

;10/7: Branch if HIGH
; 7: To send SPACE

4:
; 18: Wait 4018 state
; 4: Bump counter
;10/7: To send next bit
; 4: To send stop bit

10: It is the responsibility
; : of the CALLER routine
; : to make an adequate
; : length of the stop bits

states delay. {+18) means "CALLfl instruction Status
; so HOLD gives 4043 states delay including "CALL" of the Caller . ,
HOLD:

LXI H,167 . 10: For 1 Bit {600 Baud) ,
HOLDl:

DCX H . 6: ,
MOV A,L . 4: ,
ORA H . 4: ,
JNZ HOLDl ;10/7:
RET . 10: ,

'-.... __ _

READING DATA FROM THE CMT

; Sample program for reading a Byte from the CMT
Assume called with Interrupt disable

;
READ:

CALL BITI
JC READ

LXI H,????
CALL HOLDl
MVI C,8

BYTEI:
CALL BITI
MOV A,B
RLC
MOV B,A
DCR C
JNZ BYTEI
RET

; GET A BIT

; EXIT: CF= 1 IF MARK
CF= 0 IF SPACE

BITI:

BITil:

CALL
MOV
CPI

PUSH
LXI
JC
LXI

CALL
POP
RET

SYNC
A,D
16

PSW
H,???

BITil
H,???

HOLDl
PSW

; 10: Search for start
;10/7: Wait until Start bit

; : has come
; 10: . ,

7: Read 8 bits

. 18: , . 4: , . 4: Move CF to , . 4: ,
Bit-0

; 4~ Bump counter
;10/7: Read next BIT .
; 10: No check for Stop bit

; 18:
; 4: Get counter
; 7: See whether MARK or

; : SPACE, If MARK then
; : CF=l else CF=0

; 12: Save CF
; 10: Assume MARK

;10/7: GQod assumption
; 10:

; 18:
; 10:
; 10:

CALCULATE PULSE DURATION

EXIT: [D] = LOOP COUNT IN THIS ROUTINE

SYNC:

SYNCl:

SYNC2:

MVI

RIM
ANI
MOV

RIM
ANI
CMP
JZ

RIM
DCR
JZ
ANI
CMP
JNZ
MOV
CPI

JNC
RET

D,36

80H
E,A

80H
E

SYNCl

D
SYNC

80H
E
SYNC2
A,D
11

SYNC

; 7: Reset counter
; : Margin is about 10%

: 4 :
; 7: Isolate SID bit
; 4: Save it

; 4: Get Current status
; 7: Isolate SID bit
; 4: Same status?

;10/7: then wait

4: Get current SID
; 4~ Bump counter

;10/7: Too long, restart
; 7: Isolate SID
: 4 :
;10/7:
; 4: Get result
; 7: Too short? (392 state,

; : margin 20%)
;10/7: then restart
; 10:

1.10 BARCODE READER

This chapter explains the Electrical specifications and the
basic theory of operation of the Barcode Reader. The Barcode
Reader programs on the PC-8300A Personal Application Kit Tape,
assume that operation is done with the HEDS-3071 (produced by HP
Corporation).

ELECTRICAL SPECIFICATION

Refer to the PC-8300A Users Guide for information about the
shape and Pin connection of the Barcode interface.

One may connect any Barcode Pen to this interface. But NEC
recommends the products of YHP (Yokokawa HP) or Mecano Kogyo. It
is better to use a pen that has a Power switch, for saving the
electrical power of the PC-8300A.

The data line of the Barcode Reader is connected to Pin-2 of
the BCR. This pin is connected to RST 5 . 5 of the CUP (80C85) nd
Port C-3 of the 8lC55 as shown below.

+-------+
+----~-+2 91 80CS5 I

B
C
R

RxDB 1------- -+~->---+------lRST 5.51
15 I

GND 1---+ +-------+
17 I 133K

GND 1---+ I +-------+
19 I IPORT I 81C55

vcc 1--------+ +------1
+------+ C-3 21 BAR

+-------+

While the Barcode Reader is powered on, PIN-2 is kept at a
low level, and RST 5.5 is high. The Black Bar is represented by
logical Low, SPACE BAR is High respectively.

THEORY OF OPERATION

This section describes the basic sequence of reading data
from the Barcode Reader.

1. If power on, RST 5.5 is activated. At the first point of
the RST 5.5 routine which is interrupted by RST 5.5 dis-
ables all interrupts.

2. Pole the Bar Code DATA port. And calculate the duration
of the same status and save the status and duration.

3. If Low level continues too long assume that Power off
and enable.

4. Decode the got Data and transfer the data to the upper
routine.

Data from bar code reader
+----+----+
I1011I1011I IN BBH (187D)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+---+-----+---+---+---+
I - I - I - I - I BCR I - I - I - I
+---+---+---+---+--~--+---+---+---+

BCR Data from bar code reader

1.11 Interrupt Function

This machine have a 3 level input with priority and works
with input RST 7.5,6.5, and 5.5 of a•ca5. Interrupt level and its
priority order is the following:

Priority Order
High

Interrupt channel
RST 7.5

Function
Key int

I
I

Low

Key int
uPD1990AC

UART
BCR

RST 6.5 UART
RST 5.5 BCR

It checks the key input by the 256Hz clock from

Receipt interrupt of UART
Interrupt for bar code reader

These interrupt have their own mask flags and each can be
masked independently. Mask flag cari be reset by SIM (Set Inter~
rupt Mask) command.

7 6 5 4 3 2 1 0
+---+---+---+------+-----+------+------+------+
: - I - I - I R7.5 I MS& I M7.5 I M6.5 I M5.5 I
+---+- -+---+-- ---+-----+ -----+- ----+- -- -+
M5.5
0
1

M6.5
0
l

M7.5
0
1

MSE
0
1

R7.5
0
l

RST 5.5 Mask flag
Reset
Set

RST 6.5 Mask flag
Reset
Set

RST 7.5 Mask flag
Reset
Set

Mask set enable
Mask set disable
mask set enable

Reset RST 7.5
Set
Reset (In spite of bit 2 or bit 3)

1.12 I/0 port address

Upper I/0 address
LSB MSB

1000
1001
1010
1011
1100
1101
1110
1111

(1) ROM cassette

Function

ROM Cassette
System control port
bank control port
PIO SlCSS port
UART data I/0 port
UART data control port
Keyboard
LCD

12SK bytes ROM cassette select and A16
+----+----+
11000100001 OUT 80H (128D)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---------+-----+
l - l - l - l - l - I - I ROM SEL I A16 l
+---+---+---+---+---+---+---------+-----+

A16

ROM SEL
0
1

Address 16

ROM cassette select·
12SK bytes ROM erase select
128K bytes ROM select

12SK bytes ROM cassette low address
+----+----+
11000101001 OUT S4H (132D)
+----+----+

7 6 5 4 3 2 1 0
+----+----+----+----+----+----+----+-~--+
I A7 I A6 I AS I A4 I A3 I A2 I Al I A0 I
+----+----+----+----+----+----+----+----+

A7 - A0 ROM cassette low address

12SK bytes ROM cassette high address
+----+----+
11000:1000: OUT 88H (136D)
+----+----+

7 6 5 4 3 2 1 0
+-----+-----+-----+---- + - -+-----+ ---+----+
l AlS I Al4 l Al3 l A12 l All I Al0 I A9 I AS I

+-----+-----+ ----+-----+-----+- ---+----+-· --+

AlS - AS Rom cassette high address

128K bytes ROM data read
+----+----+
:1000:1100:
+----+----+

7

IN

6

SCH (140D)

5 4 · 3 2 1 0
+----+----+----+----+----+----+----+----+
l D7 l D6 l D5 I D4 I D3 l D2 I Dl l D0 I
+--~-+----+----+----+----+----+----+----+

D7 - D0 ROM data

(2) System control
+----+----+
:1001:0000: OUT 90H (144D)
+----+----+

7 6 5 4 3 2 1 0
+-- ---+------+------+-----:--+--------+---+---+---+
I SELA I SELB l PSTB I TSTB l REMOTE I - l - I - I
+------+------+------+------+--------+---+---+---+
REMOTE

0
1

TSTB
0
1

PSTB
0
1

SELA
0
0
1
1

SELB
0
1
0
1

Cassette motor control
OFF
ON

Command strobe to clock
OFF
ON

Strobe to printer
OFF
ON

Serial I/F select
Not used
RAM file
Floppy disk
RS-232C

(3) Bank control
+----+----+
:1010:00011 OUT AlH (161D)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+---+-------+-------+-------+-------+
I - : - : - : - I HADR2 l HADRl I LADR2 I LADRl I
+---+---+---+---+-------+-------+-------+-------+

LADR2
0
0
1
1

HADR2
0
0
1
1

(4) Bank status

LADRl
0
1
0
1

HADRl
0
1
0
l

Low Address 0000-7FFF selection
Bank #0 (ROM #0)
Bank #1 (ROM #1)
Bank #2 (RAM #2)
Bank #3 (RAM #3}

High Address 8000-FFFF selection
Standard RAM (RAM #1)
Not used
BANK #2 (RAM #2)
BANK #3 (RAM #3)

The current status ~f the memory, the status of the bank
switching, can be examined by the IN instruction. The IN instruc­
tion reads 8 data bit~ from the specified I/O port.

+---+---+---+---+---+---+---+---+
MSB I 7 l 6 I 5 I 4 I 3 I 2 I 1 I 0 I IN A0H (160D)

+---+---+---+---+---+---+---+---+

Bit 7 Serial Interface status #2
Bit 6 Serial Interface status #1
Bit 5 Not
Bit 4 Not
Bit 3 High
Bit 2 High
Bit 1 Low
Bit 0 Low

serial I/F #2
0
0

Used
Used

address (8000H - FFFFH)
ad.dress (8000H - FFFFH)

address (0000H - 7FFFH)
address (0000H - 7FFFH}

Serial
0

I/F #1

1
Not Used
SIO port

status
status
status
status

1
1

0
1

Floppy disk port
RS-232C port

#2
#1
#2
#1

High Address #2 High Address #1
0 0 Bank #0 (Ram #1)
0 1 Not used
1 0 Bank #2 (Ram #2)
1 1 Bank #3 (Ram #3)

Low Address #2 Low Address #1
0 0 Bank #0 (ROM #0)
0 1 Bank #1 (ROM #1)
1 0 Bank #2 (RAM #2)
1 1 Bank #3 (RAM #3)

Refer to Chapter xx for more information on the Serial

(5) PIO 81C55 address
I/O address_
10111000
10111001
10111010
10111100

J?ort A out
+-----+----+
11011110011
+----+----+

7

Selection
Inside command/status register
General I/O port A (PA0-PA7)
General I/O port B (PB0-PB7)
General I/O port C (PC0-PC5)

OUT B9H (1850)

6 5 4 3 2 1

Interface.

0
+-----+-----+-----+-----+-----+-----+-----+-----+
I PA7 I PA6 l PAS I PA4 I PA3 I PA2 I PAl I PA0 I

+-----+-----+-----+-----+-----+-----+-----+-----+
I PD7 I PD6 I PDS I PD4 I PDJ I PD2 I PDl I PD0 I

+-----+-----+-----+-----+-----+-----+-----+---~-+
I KS7 I KS6 I KSS I KS4 I KS3 I KS2 I KSl I KS0 I

+-----+-----+-----+-----+-----+-----+-----+-----+
I -- I -· t -- I CCK I CD0 I C2 I Cl .I C0
+-----+-----+-----+-----+-----+-----+-----+-----+

PA7 - PA0
PD7 - PD0
KS7 - KS0
C2 - C0
CD0
CCK

0
1

LCD chip select
Printer data
Keyboard data
Clock command out Port
Clock data out port
Calendar shift clock
Clock OFF
Clock ON

Port Bout
+----+----+
:101111010: OUT BAH (186D)
+----+----+

7 6 5 4 3 2 1 0
+-----+-----+ - . --+-----+-------~+----+-----+-- --+
I RTS I DTR I BELL I APO I DCD/RD I MC I PBl I PB0 I

+-----+-----+------+-----+--------+----+-----+-----+
I --- I --- I ---- r --- I------ I =- I --- I KS8 1
+-----+-----+------+-----+--------+----+-----+-----+
PBl - PB0

MC
0
1

DCD/RD
0
1

APO
0
l

BELL
0
1

DTR

RTS

LCD chip select

Melody control port
ON
OFF

RS-232C's ·ocD/RD select
Ring detect
Data carrier detect

Auto power off out
OFF
ON

Buzzer out
Yes
No

RS-232C DTR out, Active low

RTS out, Active low

Port c Input
+----+----+
11011:1011: IN , BBH (187D}
+----+----+

7 6 5 4 3 2 1 0
+---+---+-----+-----+-----+------+------+-----+

(6}

I - I - l DSR I CTS I BCR I BUSY I SLCT l CDl I
+---+- -+-----+-----+-- --+------+------+ ----+

CDI

SLCT
0
1

BUSY
0
1

BCR

CTS

DSR

UART data I/0 port

Clock data in port

Printer select
Printer deselect (Erase select}
Printer select

Printer busy
Printer ready
Printer busy

Bar code reader data input

CTS in active low

RS-232C DSR in active low

+----+----+
1110011000: IN/OUT CSH (2000}
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+

l
+---+---+---+---+---+---+---+---+

UART data

(7) UART control port
Command write
+----+----+
1110111000: OUT DSH (216D)
+----+----+

7 6 5 4 3 2 1 0
+---+---+---+------+------+----+-----+-----+
l - l - I - l CLS2 I CLSl 1 Pl I EPE : SBS I
+---+---+---+------+------+-..---+-----+-----+

SBS
0
1

EPE
0
1

PI
0
1

CLS2
0
0
1
1

CLSl
0
1
0
1

Stop bit select
Stop bit length 1 bit
Stop bit length 1.5 bit in case data

length is 5 bit other case 2 bit

Even parity enable
Odd parity
Even parity

Parity inhibit
Parity generation check
Parity generation check inhibit

Character length select
Data length 5 bit
Data length 6 bit
Data length 7 bit
Data length 8 bit

Status read
+----+-----+
:110111000: IN DSH (216D)
+----+----+

7 6 5 4 3 2 l 0
+-----+---+---+------+----+----+----+--------+
I LPS l - I - I TBRE I PE I FE 1 OE 1 DCD/RD I

+-----+---+---+------+----+----+----+--------+
DCD/RD

0
l

OE
0
1

FE
0
1

PE
0
1

TBRE
0
1

LPS
0
1

Data carrier detect/ring detect
ON
OFF

Overrun error
No error
Overrun error generation

Framing error
No error
Framing error generation

Parity error
No error
parity .error generation

Transmitter buffer register empty
Empty
To transmit new data to TBR

Low power signal
Enough power
Falling power voltage

SYSTEM SLO'l.'

Assignment 0£ Signal
+----.---------------- --------+

./ 1-- -------------------·----47 \
I 2-------------•------------48 \
+-----------------------------~---+

Functions of the Pin Signals

1. VDD (OUT) [P:i,ne 1 and 2]
I :t' ·you don't use the BCD, this Pin can supply the current

with 50mA. · ··

2. AD0 - AD7 {IN/OUT) [Pins 3 - 10]
The lower 8 bits of the memory ~ddress (or I/0 address) ap-

pear on the bus during the first clock cycle of a machine
cycle. It then becomes the data bus during the other cycles.

3. AS - AlS {OUT) [Pins 13 - 20]
The most significant 8 bits of the memory address or the I/0
address. The output goes off during the Hold mode, it then
becomes ."H" level, because .it is connected to a pull up
resister {100k Ohm) inside.

4. /RD (OUT/ 3-state) [Pin 27]
The read control signal, 3-state during Hold mode.

5. /WR (OUT/3-state) [Pin 28]
The write control signal, 3-state during Hold mode.

6. IO/M (OUT/3-state) [Pin 29]
When this signal is "H" level and "L" level, respectively,

the CPU has access to the I/0 and the memory. 3-state during
Hold mode.

7. ALEa:. {ofJT / 3.:.·s tat~) [J'in 30]
It is \i,s ed' to .s tr6be the address information (AD0-AD7) . 3-

state during Hold mode.

8. HOLD { IN) [Pin 31]
The CPU, . upon receiving the hold request, will relinquish
the use of the bus as soon as the completion of the current
bus transfer. When the Hold is acknowledged, the /RD, /WR,
!O/M, ALE .lines are 3-states and the ADS - AD15 lines are
"H" level ..

9. HLDA {OUT) [Pin 32]
It indicates that the CPU has received the HOLD request and

that it will relinquish the bus in the next clock cycle.

-.___.

10. INTR (IN} [~in 33]
The general purpose interrupt~ It is sampled only d~ring the
next to the last clock cycle of an instruction and\\d· .. uring
Hold and Halt states.

11. /INTA (OUT} [Pin 34]
It is used instead of (and has the same timing as) .. /RD

during the instruction cycle after an INTR is accepted~

12. RESETO (OUT} [Pin 35)
It indicates the CPU is being ~eset. Can be Used as a system

reset. , .

13. READY (IN) [Pin 36)
If it is "L", the CPU will wait an integral number .9f clock

cycles for it to go "H" before completing the read ·or write
cycle.

14. /ROME (OUT} [Pin 37]
The enable signal for externai ROM cartridge or g~neral

purpose. When the upper 4 bits of the I/0 address are 8, it
goes "L".

40H138
+'.""----.,-+

IO/M ----IGl
I_

Al5 -----IG2

A14 -----IC
Al3 -----IB
A12 -----IA

Y01-----ROME
Yll-----CONTROL

I
I

Y21-----BANK
Yll-----8155

Y41-----6402D
YSl-----6402S
Y61-----KEY

Y71-----LCD
+-------.+

15. E (OUT) [Pin 38]
It is used as a memory enable signal of the .i::ead _9r write

cycle. E is the logical OR (active high) of ,the JRD and, {~,R·) ,: L

· - ,

'·~ ...

16. /BANK 3 (OUT) (Pin 39]
the memo~y .enab,le signal of the external RAM cartridge.

~;~ ~-- .- .. <·."·.~\. .';;' 'f'; -_ ., .

17. 1 HADR.S.D .t :tN) . [P,in 41]
:ff .it ,:i.,si "'.H", the mem.ory of the high address. (8000H to

FFFiH) ~n the PC is dis~bled.

18. L~DR:SJ) (l'.N)· [Pin 42]
.I,:~\).i~- i~, "~'', · tl}e memory of tl).e LOW address (0H to 1FFFH) in

the)~~~<:i.-s q,;~s~bJ,~d. ·
, . . ' ., · .. ,- ~- ·- ·~'; '.;.; <-~~ •, . : . ' ·,

19. rcLK (C>t1Tf :.([P.i.n 43) , .
2. 5MHz cio'ck output.~ -· !t is the same phase as the CPU clock.

20. POWER (OUT) [Pin 44]
It is the signal /RESET (connected to the CPU) is reversei:L

DC CHARACTERISTICS

+----- - -- +-- ·- ------ ---------+
Symbol l Drive Capacity (mA) l

+------------~-+---------------------+
I A00 - A~? . L . 4,k 4 . .
+--------~~---~+------~--------------+
I-AS - AlS I 4.4 I
+-------------~+---------------------+
l /RD,/WR,IO/M l 4.4
I ALE,RESETO
+--------------+----r----------------+
I HLDA, / INTA, CLK l 2 . 0 l
+--------------+---~-----------------+
IE,/R.OME,/BANK3l l.l
+--------------+ ----- --------------+

AC qH~RACTERISTICS
. . ·. ·fl}

l'J ,} _ ' : f; · ... , ii ' ' ' • '
see ~~g;.,t~ 31 i. ,;. .;. 2 3 I '1 .,

,. .

- ·----·

MEMORY CONTROL CIRCUIT

In this section, RAM #n means the chip number ·on ·the · main ·
board. The memory of the PC-8300A consists of RAM 16K and ROM 32I<­
bytes, and can be expanded to 48K bytes on optional .. RAM so~k~'t -.... -
(RAM Chip #2 - #7) and to 32K bytes ori the user ' ROM soc~et:d Rb~
#l) in the PC. · · · · ~, ".<i; .- '.~:,

RAM chips (#0 - #7) and ROM (~0 .. #l) __ . are connected . t <f~· ih;te;·
same DATA bus and their outputs a1:"e controiled by / CE ··and: ·J!BA.Nk
signal. There are five banks of BANK #0 (available .RO'i1if.1'f0:).)~.$artk · ;."; .
#1 {user ROM #1), STDRAM (available RAM #0 - #1 and_opti onal RAM
#2-#3), BANK #2{optional RAM #4 - #7) and · BJ\Nit #-.'.f !;,~R-AM'.· :.\ !r
cartridge) . >f-'

ADDRESS STDRAM BANK #2
+---.------·--+

FFFH
E000H

+-----+
IRAM
1#1

------- +----·+
DFFFH IRAM I
C000H I f0 l I
------- +-+-----+--+
BFFFH IRAM
A000H I I #2
------- l.+-----+
9FFFH I IRAM
8000H t I #3
------- I +---~-+

+------+
IRAM
1#7
+------+
IRAM -
1 #6
+--_;----+
IRAM

·1 #5 . I
+------~+
IRAM I
I #4
+------+

+----------------------+

RAM ADDRESSES

-:.,·- ·: _ _.;· __ ; ·'•,:.. : ...
-··--.> OPTIONAL R)..M ' . ' '" -.-

The way in which banks are converted is by sof·tware control,
described in Chapter XX. When the PC is reset, it becomes same .
mode as before reset of the composition No. 1-3. E,ut in the cas~
of nothing of optional RAM BANK #2 - #3, it can _become only No. 1
mode. If optional ROM is installed, another composition No . -4-6
are possible. Further, as it becomes 64K mode b.yt~s fuli ·lAM·J. ttf~ ii .:~f
optional. RAM BANK #2 - #3, one can use a CP/M, etc.

