
PC-8201A Technical Manual

First edition

Mar 15th 1984

NEC Corporation
Persona] Computer development division

--1 - .

.. ; ;a;. ~ "

IMPORTANT NOTICE

(1) All rights reserved. This manual is protected br
copyright. No part of this manual may be reproduced in
any form whatsoever without the written permission of the
copyright owner.

(2) All efforts have been make to ensure that the contents
of this manual are correct; however, should any errors be
detected, NEC would greatly appreceate being informed.

(3) NEC can assume no responsibility for errors· in this
manual or their consequences. The entire risk as to the
results of and performance of this manual is assumed by
you.

Cc) 1984 NEC Corporation
Personal Computer Development Division

Tokyo, Japan

2 -

The numeric notation and rules in illustration

In this manual, all numbers are expressed in Decimal
unless preceded by special radix prefix Ax. Ao ,AB and Ao.
AX, AO and AB represent hexadecimal, Octal and Binary numbers
respectively. For instance, AX1000 is hexadecimal number
1000, which is 4096 in Decimal. Similarly AO400 is octal
number 400, which is 256 in Decimal. AB10000000 is Binary
number 10000000, 128 in Decimal. AD is used to explicitly
tell that is the decimal number.

In the illustration, the upper side of the memory map
is near AXFFFF. So the part drawn below.another part is
allocated at lower address area.

----------------- AXFFFF
I
I
I A
I

I
I

: File A

--------------~--I
I

l File B

V

Upper

Lower

---------------- AX0000

Fig 0.1 The •File A• is located
upper the •File e·.

c·=· means ·skipped ••)

- 3 -

And the address and the pointers written in the
illustration points· the just above the line.

APOINT ---> AX8000

·,
I

================= <Skipped)

---------------- <-- APOINT
("'X7FFF>

Fig 0.2 Pointer and its contents

- 4 -

Authors:

Chapter 2 -- 4

Mr.Youshiro Hayashi

Software Engineer

Ap~lication Technology Department
Personal Computer Sales Promotion Division

Chapter 1,5 -- 8

Mr.Hiroaki Yokoyama

Software Engineer

Development department
Personal Computer Development Division

Chapter 9 -- 14

Mr.Akio Takagi

Software Engineer

Development Department
Personal Computer Development Division

Chapter 15

Mr.Moriharu Seki

Hardware Engineer

Development Department
Personal Computer Development Division

Rewritten and edited by Mr.Hiroaki Yokoyama

- 5 -

CHAPTER 1

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.3
2.4

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4

3.2
3.3
3.3.1
3.4
3.5
3.6

CHAPTER 4

4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.2

'iAPTER 5

5.1
5.2
5.2.1
5. 2. 2-
5. 2. 3
5.2.4

INTRODUCTION

MEMORY MAP

OVERV I EU • 13
BANK SWITCHING ARCHITECTURE ••••••••••• 16

Bank Switching Hardware •••••••••••• 17
Bank Switching Software •••••••••••• 20

GENERAL MEMORY ·MAPPING OF INTERNAL SOFTWARE USE • 21
SAMPLE •••••••••••••••••••••• 25

HOU TO USE 2ND ROM

CONSIDERATION OF INTERRUPT •••.•••••••• 28
Power Off Trap (ADDRESS AX4CFA) •••••••• 29
Barcode Reader ••••••••••••••••• 30
UART • 31
Interval Timer (ADDRESS AX1EBE With Disable
Interrupt) ••••••••••••••••••• 33

ROM SWAPPING METHOD ••••••••••••••• 35
THE METHOD TO USE 1ST ROM ENTRY FROM 2ND ROM ••• 36

Samp 1 e • 37
SEQUENCES IN THE 2ND ROM ••••••••••••• - 39
SUMMARY -- IMPORTANT NOTICE ••••••••••• 42
SAMPLE • 44

HO~ TO USE 2ND/3RD RAM

READ ANO WRITE TO ANOTHER RAM BANK •••••••
Method 1 CUSING 1st ROMl ••••••••••••

GETBNK CAX7EECJ •••••••••••••••
PUTBNK CAX7EEBJ •••••••••••••••

Method 2 CUSING YOUR ORIGINAL CODEJ ••••••

UNDERSTANDING THE RAM FILE CONCEPT

SUMMARY •
WHAT IS RAM FILE? • • • • • • • • • • • • • • • •

DO Fi 1 e <ASCII File) • • • • • • • • • • • • • •
BA File • co File • • • • • • • • • • • • • • • • • • . . •
The Order Of The Files In RAM • • • • • • • • •

- 6 -

51
51
51
52
53

60
62
62
66
74
75

CHAPTER 6

6.1

CHAPTER 7

7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.1.4
1.2.1.5
7.2.1.6
7.2.1.7
1.2.1.a
7.2.1.9
7.2.1.10
7.2.1.11
7.2.1.12
7.2.1.13
7.2.1.14
7.2.1.15
7.2.1.16
7.2.1.17
7.2.1.18
7.2.1.19
7.2.2
7.2.3
7.2.4

CHAPTER 8

8.1
8.2
s.2.1
a.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.4
8.5
8.6
8.7

DIRECTORY STRUCTURE

DIRECTORY CONFIGURATION PER ENTRY • • • • • • • •

RAM ORGANIZATION

MEMORY MAP ABOUT RAM FILES ••••••••••••
BOOKKEEPING AREA •••••••••••••••••

Part IC For RAM File Handling And BASIC> •••
FS IDSV •
HI MEM • • • • • . • • • • • • • • • • • • • • •
TXTTAB •
STKTOP ••••• , •• , •••• , •••••.
DI RTBL •
NULD IR •
SCRO IR • • • • • • • • , • • • • • • • • • • •
EOTOIR • •••••••••••••••••••
USRO IR •
BOTTOM •
MEMS IZ •
FRET OP • • • • • • • • • • • • • • , • • • • •
ASCTAB • • • • • • • • •. • • • • • • • • • • •
BI NTAB • • • • • • -. • • • • • • • • • • • • •
VARTAB • , • • • • • • , • • • • • • • • • • •
ARYTAB •
STREND ••••••••••••••••••••
FIL TAB •
NULBUF ••••••••••••••••••••

Part II C VRAM Area For LCD> •••••••••
Part III (Bookkeeping Area For BIOS) •••••
FCB (file Control Block) ••••••••••••

RAM FILE HANDLING

76

79
86
87
88
88
89
89
90
90
91
91
91
92
92
92
93
93
93
94
94
94
95
98
98
99

WHAT SHOULD WE 00 IN RAM FILE HANDLING •••••• 103
HOW TO MAKE NEW FILE ••••••••••••••• 106

How To Register The New File Name ••••••• 106
How To Make 00 File •••••••••••••• 106
How To Make A BA File ••••••••• , ••• 109
How To Make A CO File ••••••• , •••• , 111

HOW TO DELETE A FILE •••••••••• , •••. 113
How To Delete A DO File ••••••••.• , , 113
How To Delete A BA File •••• , , •••••• 114
How To DELETE A CO File ••••••••••.• 117

HOW TO APPEND DATA TO DO FILE •••••••••• 122
HOW TO INSERT DATA TO DO FILE ••••.•••.• 123
HOW TO DELETE DATA FROM DO ·FILE ••••.•.•• 124
USEFUL ROUTINES FOR RAM FILE HANDLING IN ROM #0 . 125

- 7 -

8.7.1
8.7.2
8.7.3
8.7.4
a.a
8.8.1
8.8.2
8.8.3
8.8.4
s.a.s
8.8.6
8.8.7

CHAPTER 9

9.1
9.2
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.2.3
9.3.2.4
9.3.3

9.3.4
9.4
9.4.1
9.4.1.1
9.4.2
9.4.2.1

9.4.3
9.4.3.1
9.4.4
9.4.4.1
9.4.5
9.5
9.5.1
9.5.2
9.5.3

CHAPTER 10

10.1
10.1.1
10.1.2

MAKHOL • 126
LNKFIL ••••••••••••••••••••• 129
MASOEL • 132
CHEAO • 133

SAMPLE PROGRAM ••••••••••••••••• 134
Make A New 00 File CASCii File) •••••••• 135
Save Data Into 00 File ••••••••••••• 139
DELETE SOME DATA FROM 00 FILE ••••••••• 142
DELETE 00 FILE ••••••• ~ ••••••••• 144
DELETE BA FILE ••••••••••••••••• 146
MAKE NEW CO FILE •••••••••••••••• 149
DELETE A CO FILE • • • • • • • • • • • . • • • • • 152

LCD INTERFACE

OVER VIEW •••••••••••••••••••• 154
CONSTRUCTION OF LCD ••••••••••••••• 154
I/0 PORT RELATED TO LCD ••••••••••••• 156

BLOCK SELECT --- PPI 81C55 PORT A/B •••• ·156
LCD COMMAND SET •••••••••••••••• 157

Display ON/OFF •••••••••••••••• 157
Set Addr~ss Counter ••••••••••••• 158
Set Starting Page ••••••••••••••• 160
Select Address Counter Mode ••••••••• 162

Read Status --- Read The Status Of Segment
Driver. •· • • • • • • • • • • • • • • • • • • • 163
Uri te/Read Oisp 1 ay Data • • • • • • • • • • • • 164

SOFTWARE FOR LCD ••••••••••••••••• 165
How To Initialize The LCD •••••••••••• 165

Sample Program For LCD Initialization ••••• 166
How To Write A Character •••••••••••• 168

Sample Program Of Uriting A Character On The
LCO. • 169

How To Set/reset A Dot On The LCD. • ., • • • • • 172
Sample Program For SET/RESET Dot. · •••••• 172

How To Define A Character ••••••••••• 177
Structure Of Character And How To Define It •• 177

How To Store The Your Own CG •••••••••• 179
AVAILABLE SYSTEM WORK AREA •••••••••••• 180

How To Use The CG In System ROM ••••••••• 180
VRAM AREA IN SYSTEM Uork Area ••••••••• 182
Reverse The Attribute Of The Specified Area .•• 183

KEYBOARD INTERFACE

THE KEYBOARD MATRIX ••••••••••••••• 184
I/0 Port For Keyboard ••••••••••••• 186
KEYBOARD STROBE----- PART A/8 Of 81C55 •••• 186

- 8 -

10.1.3 KEYIN ----- Read Keyboard Data • • • • • • • • 187
10.1.4- Keyboard Scanning • • • • • • • • • • • • • • • 188
10.2 SOFT WARE FOR KEYBOARD OPERATION. • • • • • • • • 189
10.2.1 How To Read The Keyboard • • • • • • • • • • • • 189
10.2.1.1 Sample Program Reading Keyboard. • • • • • • • 190

CHAPTER 11 ·CMT INTERFACE

11.1 HARDWARE FOR CMT •••••••••••••••• 193
11.1.1 Writing Operation •••••••••••••••• 194
11.1.2 Reading Operation •••••••••••••••• 195
11.1.3 Baud Rate Generation •••••••••••••. 196
11.1.4 I/0 Port For CMT ••••••••••••.••. 197
11.1.4.1 SCP---- SYSTEM CONTROL PORT •••••••• 197
11.1.4.2 PPI 81C55 Command Set •••••••••••• 197
11.2 SOFTWARE FOR CMT ••••••••••••••••• 199
11.2.1 CMT MOTOR CONTROL ••••••••••••••• 199
11.2.2 Baud Rate Generation •••••••••• ! ••• 200
11 • 2 • 3 Write A Oa ta To The CMT • • • • • • • • • • • • 201
11.2.4 Reading A Data From The CMT •••••••••• 203

CHAPTER 12 SERIAL INTERFACE

12.1 HARDWARE OF SERIAL INTERFACE ••••••••••• 206
12.1.1 I/0 Port •••••••••••••••••••• 207
12.1.1.1 Channel Select - (Sy9tem Control Port) •.• 207
12.1.1.2 ·uART Mode Control •••••••••••••• 208
12.1.f.3 UART Status Read ••••••••••••••• 209
12.1.1.4 Set UART Baud Rate CPPI 81C55 Timer Section> • 210
12.1.1.S UART DATA I/0 Port •••••••••••••• 212
12.2 SOFTWARE DESCRIPTION ••••••••••••••• 213
12.2.1 How To Initialize Serial Port ••••••••• 213
12.2.1.1 Sample Program••• How To Initialize SERIAC

12.2.2
12.2.3
12.3

CHAPTER 13

13.1
13.2

CHAPTER 14

14.1

Port • 214
SEND A Data To The Serial Port ••.•••••• 217
Read A Data From Serial Port •••••••••• 218

AVAILABLE SYSTEM AREA ••••••••••••••• 219

BARCODE READER

ELECTRIC SPECIFICATION •••
THEORY OF OPERATION ••••

• • • • • • • • • • • •
• • • • • • • • • • •

221
222

PARALLEL INTERFACE

HARDWARE SPECIFICATION • • • • • • • • • • • • • • 223

- 9 -

14.1.1
14.1.2
14.1.2.1
14.1.2.2
14.1.2.3

Physical Interface Of PC-8201A ••••••••• 223
I/0 Port For PRINTER Interface ••••••••• 223

Port A---- Data Out Put Port For Printer ••• 223
Port C ---- BUSY,SLCT Signal Read •••••• 224
SPCCSystem Control Port> --- STROBE Output

14.1.3
14.2
14.2.1

CHAPTER 15

15.1
15.1.1
15.1.2
15.1.2.1
15.1.3
15.1.4
15.2
15.3
15.3.1
15.3.1.1
15.3.1.2
15.3.1.3
15.3.1.4
15.3.1.5
15.3.1.6
15.3.1.7
15.3.1.8
15.3.1.9

Po~t . •••••••.••....•..... 224
Basic Theory Of Writing A Data To Centronics •• 225

SOFTWARE SPECIFICATION •••••••••••••• 226
How To Write A Byte To Th~ Printer ••••••• 226

HARDWARE

SYSTEM SLOT ••••••••••••••••••• 229
Assignment Of Signal •••••••••••••• 229
Explanation Of Pin ••••••••••••••• 232

Function Of Signal •••••••••••••• 232
DC Characteristics ••••••••••••••• 236
AC Characteristics ••••••••••• ~ ••• 237

MEMORY CONTROL CIRCUIT •••••••••••••• 240
I/0 ADDRESS ••••••••••••••••••• 245

Detail Information About I/0 •••••••••• 247
Reserve Area • •••• ~ ••••••••••• 247
System Control •••••••••••••••• 247
Bank Contro 1 • • • • • • · • • • • • • • • • • • 24.8
Bank Status ••••••••••••••••• 249
PIO 81C55 Address •••••••••••••• 250
UART Data I /0 Port • • • • • • • • • • • • • • 254
UART Control Port •••••••••••••• 254
Keyboard Input •••••••••••••••• 257
LCDC Address • • • • • • • .• • • • • • • • • • 257

- 10 -

CHAPTER 1

INTRODUCTION

The portable personal computer, PC-8201A is a unique
and practical computer. It has many special capabilities in
it. For example, it uses large LCD CLiquied Crystal Display),
CMOS (Complementary Metal Oxide Semiconductor) technology and
special built-in Software.

The built-in software features are very powerful a~d
useful. But for using PC-8201A fully in particular purpose,
new Software written in Machine language might be requested.
One of the built-in software, N82-BASIC is very useful to make
a small utility, but it's not enough to make a large size
utility, for instance, Spread Sheet or new Word Processor.

I~ order to support the programmers who want to make
such a large programs, and to support the programmers who want
to manage the hardware features directly, this document
describes ·not only the detail hardwa~e features of PC-8201A,
but also the know-how to use these features without any
trouble.

The most important thing is ·compatibility•. The
built-in Software features keep the promise in using the
memory, I/0 interface and interrupt functions. The built-in
Software checks many critical points at Power-on automatically
as far as you don't remove the ROM #0. So if you break the
promise, PC-8201A begins ·cold start· to initialize the all
contents in RAM. In this case, the important files and data
which-you stored are flushed.

The promise for using PC~8201A's features is described
in each chapter. Before making.a your special program, please

- 11 -

! ~-

INTRODUCTION

refer to the corresponding chapters. The previous INDEX will
help you.

The built-in Software uses a small part of the
PC-8201A's special features. With this manual, may you make a
super programs for your own purpose!!

- 12 -

2.1 OVERVIEW

CHAPTER 2

MEMORY MAP

The PC-8201A has the following memory capacity. The
value specified with "Max" means the maximum capacity that is
greatly expanded by adding RAM/ROM chips or RAM cartridge.

ROM 32K byte~

C Max 64K bytes)

RAM 16K bytes

(Max 96 K: 32k bytes x 3 bank)
2 banks are equipped on Main
board of PC-8201A and 1 bank
is provided with RAM cartridge.

And PC-8201A has three useful programs in the standard
ROM, ROM #0. These programs are CN82->BASIC , TEXT and
TELCOM.

N82-BASIC: Microsoft BASIC, specialized
for PC-8201A.

TEXT:

TELCOM:

Simple and powerful word
processor

Communication program with
other digital computers
via RS-232C.

The simple memory map of PC-8201A is illustrated in

- 13 -

MEMORY MAP

the next figure. This illustration is a one of the standard
pattern. Refer to Chapter 15 ~o understand the hardware
expansibility, the detail configuration of memory and how to
change the memory configuration.

- 14 -

f
I MEMORY MAP

Bank .0
AXFFFF -----------

Bank 1 Bank 2 Bank 3

RAM
STANDARD:

#1
AXC000 -----------
AXBFFF ----------

' • I

RAM I
I

(option):
*1

CRAM
#2)

CRAM
#3)

AX8000 ----------- ---------- ----------­
AX7FFF ----------- --------- ---------- -----------

ROM
STANDARD:

#0

ROM

#1

RAM

*2

RAM

#3

0 ----------- -------- --------- ~--------
Main memory RAM cartridge

Fig 2.1 PC - 8 2 0 1 A M E M O R Y M A P

The RAM it2
address, from 0
AX8000 to AXFFFF.
access. Refer to

and RAM i3 can be located both
to AX7FFF, and high address,
This selection can be done by

chapter 2.3.

- 15 -

low
from
PORT .

MEMORY MAP

2.2 BANK SWITCHING ARCHITECTURE

The heat of PC-8201A is the Intel 80C85, which is 8
bit processor and whose address bus is 16. Thus, the 80C85
can access 64K of memory at a time. In PC-8201A, however,
special memory access function called memory-bank switching is
supported. So the 64K barrier in 8-bit microprocessor can be
tricked in PC-8201A.

The RAM in the PC-8201A is divided into units referred
to as ·sANKs·. One bank can contain a maximum of 32K bytes of
memory, while the RAM can be expanded to hold a maximum of
three banks. CRAM #1, RAM *2, RAM #3)

The RAM #2 and RAM #3 can be located in two different
positions, lower position is from AX0000 to AX7FFF and higher
position is from AX8000 to AXFFFF) And RAM #3 is detachable,
because it is provided in RAM cartridge. The bank-switching
is executed every 32K bytes. For the sake of this limitation
it is impossible to access the half part of RAM #1 and half
part of RAM #2 at a time. In other words, you cannot set up
the this kind of memory allocation, lower half of RAM #2, from
AX8000 to AXBFFF, and higher part of RAM #1, from AXC000 to
AXFFFF as 32K of memory. The variety of memory allocation is
illustrated and explained kindly in Chapter 15. The
explanation about the software specification in bank-switching
is shown in the next section.

The RAM #2 and RAM #3 can be protected by a •PROTECT
SUITCH•. The •pRQTE-CT SWITCH• for RAM #2 is equipped at the
real panel. Refer to the page 1-3 in PC-8201A User's guide.
The RAM #3 has it at the side of the cartridge. But
unfortunately, RAM #1 has no such a protect function~ When
you use this protect switch, you cannot use that RAM bank in
usual way, for instance, BASIC. Because, PC-8201A uses the
highest RAM area, from AXF380 to AXFFFF to save the current
status of PC-8201A every time.

All RAM chips consists of CMOS and are back-uped by
battery. All data and program files stored in RAM will be
kept, even if the power switch is turned off._ If you make a
special utility for 2nd ROM or special RAM configuration, you
have to consider about this Power-down sequence. Refer to
chapter 3 to understand the Power-off trap in ROM #0.

- 16 -

MEMORY MAP

2.2.1 Bank Switching Hardware

The ·bank-switching· is· performed by OUT instruction.
The OUT instruction outputs 8 bit data to.the I/0 port. The
port address and that bit assign of the 8 bit data is shown
below.

MSB

PORT ADDRESS AXA1 (OUT)
Bank control

7 6 5 4 :· 3

Bit 7 not used

Bit 6 not used

Bit 5 not used .
Bit 4 not used

Bit 3 High address

(AX8000 - AXFFFF) selection

Bit 2 High address

C"X8000 - "'XFFFF> selection

Bit 1 Low address

C"'X0000 - AX7FFF) selection

Bit 0 Low address

("X0000 - "'X7FFF> selection

- 17 -

2 1 0

#2

#1

#2

#1

F'
' MEMORY MAP

High address #2 High address #1
0 0 Bank #0 CRAM #1)
0 1 not used
1 0 Bank #2 <RAM #2)
1 1 Bank 13 CRAM 13)

Low address #2 Low address #1
0 0 Bank #0 <ROM #0)
0 1 Bank #1 CROM #1)
1 0 Bank #2 CRAM #2)
1 1 Bank 13 CRAM #3)

- 18 -

MEMORY MAP

The current status of the memory, the status of
bank-switching, can be examined by IN instruction. The IN
instruction reads a 8 bit data from the specified I/0 port.
See next figure about the Port address and bit assignment of
the data.

MSB

*2

ft1

tt2

*1

PORT_ADDRESS ~XA0H CIN>
Bank status

-----------------~-------------------------------7 6 5 4 3 2 1 0

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3 ---
Bit 2

Bit 1

Bit 0

Serial I/F #2
0
0
1

1

High address #2
0
0
1
1

Low a·ddress #2
0
0
1
1

Refer to

Serial interface status #2
Serial interface status +n
Not used
Not used
High address C ... X8000 - ""XFFFF> status

High address C ... X8000 - ... XFFFF> status

Low address C ... X0000 ... X7FFF> status

Low address C ... X0000 - "'X7FFF> status

Serial I/F #1
0 Not used

SIO port
Floppy

High address #1
0
1
0
1

Low address #1
0
1
0
1

1
0

1
disk port

RS-232C port

Bank #0 CRAM #1)
Not used
Bank #2 CRAM #2)
Bank #3 CRAM #3)

Bank #0 CROM #0)
Bank #1 CROM #1)
Bank #2 CRAM #2)
Bank #3 CRAM #3)

Chapter 12 about Serial Interface.

- 19 -

MEMORY MAP

2.2.2 Bank Switching Software

The bank-switching capability is used in Menu mode.
The •BANK• command, arranged in Function key 10 (Shift+ F.S)
uses this function. This function falls into the Bank handler
routine, CHGBNK, AX7EAB. The CHGBNK checks the current bank
status, tests whether the bank really exists, save the new
bank # in BANK (AXF308), changes the bank status and jumps to
the address 0. Jumping to address 0 causes ·coLO START• if
the bank has not ever used or the flag named FSIOSV has a
wrong value. (Refer to the section 3.2 Bookkeeping area.)
Otherwise, Jumping 0 does ·wARM START·.

In or.der to
CHGBNK reads the
destination bank,
re-reads it. If
read first and the

test the existence of the another bank,
contents of the address, AXE000, in that
modifies that value, restores it, and
that bank were really in exist, the value

value re-read last are not identical.

The reason why CHGBNK jumps·into the address 0 is, you
might already notice, to set up the bookkeeping area. As
described in Chapter 7, all standard programs and operating
system uses this area every time to keep the current status.
This area contains very important pointers, flags and
interrupt routines. So without setting up this area, that
bank cannot be handled with ROM #0 correctly.

If you use a bank only with your - special application
program, which does not use the pointers on interrupt routines
in the bookkeeping area, you might think that you need not
care about the bookkeeping area. But please do not forget
that ·sHIFT+F.s• in menu level can change the bank any time.
I recommend that you will keep the current rules about
Bank-switching in ROM #0, and set up the bookkeeping area.

Refer chapter 4 •HOW TO USE 2ND/3RD RAM• to get more
detail documents.

- 20 -

MEMORY MAP

2.3 GENERAL MEMORY MAPPING OF INTERNAL SOFTWARE USE

You know that the ROM #0 addressed from 0 to AX7FFF is
used for standard programs and operating systems. (Sometimes,
·standard programs· represents BASIC, TEXT and TELCOM
especially. •operating system· also represents ·Menu·. But
there is no explicit border line between the ·standard
programs· and ·operating system·. But I do sometimes use
these words to explain the concept of the PC-8201A's built-in
software.) Also, Some parts of the RAM memory area are
reserved and used by that standard programs and operating
system. The memory map about the RAM area is figured at next
page. The each part of the - reserved area is pointed by
pointers in the ·book-keeping area·, located at the highest
part of the RAM memory, from AXF380 to AXFFFF. And the
following 2 items are included in the book-keeping area, too.

Interrupt routine
System work area

- 21 -

MEMORY MAP

Fig 2.2 PC - 8201A RAM AREA MEMORY MAP

AXFFFF -----------------
: Bookkeeping

ar-ea
I
I

·I
I

AXF3s0· -------------~---
· : User- machine

stored ar-ea

: File control
: block ar-ea

I
I

:<- CHIMEMJ
I
I

:<- CFILTABJ

: 2 Bytes space:

: String ar-ea
(used)

: String ar-ea
(fr-ee)

: <- CMEMSIZJ

: < - CFRETOPJ

"'XF384

"'XFB63

"'XFA9A

"'XFABF

: Staci< ar-ea :<- CSTKTOPJ "'XF459
:<- Stack Pointer-

I Fr-ee ar-ea I
I I

:<-
-----------------I Ar-r-ay stored I
I I

ar-ea :<-
-----------------Simple I

I

variable ar-ea :<-

.co files I
I

ar-ea :<-
-----------------I

I

CSTRENDJ "XFAE9

CARYTABJ "'XFAE7

CVARTABJ "XFAES

CBINTABJ "'XFAE3

: EDIT ar-ea
: for- BASIC :<- CEOTDIRJ+1 "F886+1

I
I : Paste buffer­

: for- TEXT :<- CSCRDIRJ+1 "XF87B

: .DO files
ar-ea

I
I

: <- ~ASCTABJ

: non-registered:
l BASIC file :<-CNULDIRJ+1

- 22 -

"'XFAE1

"'XF870+1

MEMORY MAP

: .BA fi 1 es
ar-ea

: Cur-r-ent BA
file

: .BA fi 1 es
ar-ea

: <-CTXTENDJ

l<-CTXTTABJ
I
I

"XFA88

"XFASO

l<-CBOTTOMJ+1 "XF980+1

I <-CBOTTOMJ "XF980

- 23 -

MEMORY MAP

Brief explanation about pointers which appear at the
previous page.

CBOTTOMJ
CTXTTABJ
CTXTENOJ
CNULOIRJ

· CASCTABJ
CSCROIRJ
CBINTABJ
CVARTABJ
CARYTABJ
CSTRENOJ
CSTKTOPJ
CFRETOPJ
CMEMSIZJ
CHIMEMJ

Bottom address of RAM
Beginning of the current BASIC program
End of the current BASIC program
Non-registered BASIC program
Lowest address of ASCII files
SCRAP file
Lowest address of binary files
Simple variable space
Start of array table
End of Array table
Top of stack space
Top of string free space
Highest location in memory
Highest memory available to BASIC
(The same as CLEAR's 2nd parameter)

rf. Chapter ·5 •uNOERSTANOING THE RAM FILE CONCEPT•,
·otRECTORY STRUCTURE• and •RAM ORGANIZATION•. In
those chapters, the concept of the files and detail
explanation about the pointers are described.

- 24 -

MEMORY MAP

2.4 SAMPLE

;
• ,
;
;
;
• ,
• ,
• ,
• ,
• ,
• ,
• ,

TITLE Bank switching pro~ram

This sample will only change the bank of
RAM addressed from AX8000 to AXFFFF.

· You had better check that the bank which
you want to switch really exists. And you
should save the next bank# at the
bookkeeping area, BANK •

Entry
Exit

None
None
Bank will be changed

; Bank rotation #1 -> #2 -> #3 -> #1 ~> •••

; <<< SYSTEM
SYSTEM EQU
CONTRL EQU
STATUS EQU

labels>>>
AX0000
"'X0A1
"'X0A0

; ·<<< Bank switching program>>>

ORG "'X0100

CHECK: DI
IN STATUS
MOV B,A
ANI "'B00001100

NEXTB:
ADI "'800000100
CPI "'B00000100
JZ NEXTB

MOV C,A
MOV A,B
ANI "'811110011

ORA C
OUT CONTRL

- 25 -

; Reset address
; Bank control port
; Bank status port

; This program must be
; stored between "'X0000
; and AX7FFF

; Disable interrupt
; Read current bank
; Save current bank
; Pick up high bank
• , only

; Set next bank data

status
status
status

; This pattern was not used!
; Set up next bank data
; for lap around

; Save new bank data
; Remember old bank status
; Do not change bit data
• , without RAM bank data·
; Set new RAM bank
; Select bank

MEMORY MAP

•

EI
JMP

END

SYSTEM

- 26 -

: Enable interrupt
: We must update book

keeping area • • • : Jump AX0000 is the
best way • • •

CHAPTER 3

HOU TO USE 2ND ROM

When you want to make some programs stored in 2nd ROM,
there are a lot of matters should be attended and stored in
the 2nd ROM. The matters are interrupt jump tables and power
on/power off sequences. You have to implement these tables
and sequences in order to process the ROM bank switching
smoothly. Otherwise, PC-8201A will run away on switching the
ROM bank. First half sections describe the interrupt
functions and power sequence.

And you have to know the rules to handle the files and
data in ·RAM, too. If you will use the routines in ROM #0 to
handle the RAM, you need not to care about the detail rules.
(You can get the information about the RAM file handling
routines in ROM #0 at the Chapter 8 and another technical
manual that has already been available by NEC HE in Chicago.
Please request it if you have not gotten it yet.) The last
half of this chapter describes how to use the routines in ROM
#0 from 2nd ROM, ROM *1· (Hereafter ROM #1 sometimes
represents 2nd ROM.)

If you want to make I/0 control routines and store
them in 2nd ROM, you have to understand Chapter 9 to 14. If
you utilize the ROM #0's I/0 routines, the last half of this
chapter and another manual will help you.

- 27 -

,_, ..

/

HOU TO USE 2ND ROM

3.1 CONSIDERATION OF INTERRUPT

Basically, PC-8201A has some interrupt service
routines in that system. The main purpose of. interrupts are
smooth processing in Power off trap, reading data from
Bar-code reader, communicating through UART(RS-232C) and using
Interval timer.

The interrupt table is located in the zero page area.

POUER OFF TRAP
BARCODE READER
UART
INTERVAL TIMER

NMI
RST 5.5
RST 6.5
RST 7.5

"'X0024
'"'X002C
""X0034
"'X003C

The Interval timer interrupt has the highest priority,
and UART has the second one. The lowest interrupt is used for
Barcode reader. The reason why the internal timer has the
highest priority is to scan the key and to co~nt the
auto-power off counter for saving the battery power. PC-8201A
has the ·Auto-Power Off• function·. Usually, this function is
executed after 10 minutes has past since last key stroke was
detected. (This interval can be set by the •pouER• command in
BASIC. Refer •pc-8201A Reference Manual ••) The interval .time
is used to count this period.

The interrupt hook table is located from ""XF386 to
"'XF394. And that table is constructed in the following fig.

Interrupt hook table in RAM area

"XF386
"XF389
"XF38C
"XF38F

'"'XF392

POWER ON SEQUENCE
BARCODE READER INPUT SEQUENCE
UART INPUT SEQUENCE
TIMER SEQUENCE and KEY

SCANNING SEQUENCE
POWER FAILURE SEQUENCE

- 28 -

HOW TO USE 2ND ROM

3.1.1 Power Off Trap (ADDRESS "'X4CFA>

This interrupt is Non maskable. When power switch is
turned off, this interrupt occurs. The following sequence is
the algorism of this interrupt.

1: Disable the interrupt
2: Call hook table
3: Reset Key wait counter
4: Cancel Time counter
5: Out a data to the.Auto power off port
6: HLT

The detail bit assignment of the auto power off port 1s

following.

MSB

PORT ADDRESS "'XBA <OUT>

7

Bit 7
Bit 6
Bit 5

Bit 4

Bit 3
Bit 2

Bit 1
Bit 0

81CS5 port B

6 5 4 3

RTS output
DTR output
BELL

0:Ring
1:Stop

Auto power off
0:0ff
1:0n

DCO/RO select
Melody control

0:0n
1:0ff

LCD chip select
LCD ch1p· select

2 1 0

be 11
be 11

#1
#0

rf.Chapter 9 to 15 about more detail information of
this port.

- 29 -

~­
t

HO~ TO USE 2ND ROM

3.1.2 Barcode Reader

(ADDRESS AXF389 with Disable interrupt)

This interrupt is using RST 5.5. If you do not use
barcode· reader program, this interrupt should do "RETURN"
soon.

- 30 -

,,-

HOW TO USE 2ND ROM

3.1.3 UART

(ADDRESS AX6E00 with Disable interrupt)

This interrupt is using RST 6.5.
caused by UART. (Serial communication
interrupt occurs when the data in 6402
available.

This interrupt is
device 6402) This

receive buffer is

The algorism of this interrupt is shown below.

1: Disable the interrupt

MSB

2: Call hook table
3: Read data from 6402
4: Read error status from 6402
S: Xon/Xoff control check
6: SI/SO control check
7: Return to previous process

PORT ADDRESS AxDs couT>
UART control port

7 6 s 4

Not used
Not used
Not used

3 2 1

Bit 7
Bit 6
Bit- S
Bit 4
Bit 3
Bit 2

Character length select ~2
Character length select #1
Parity inhibit

0

0:Parity generation Check
11Parity generation check,

Inhibit

Bit 1

Bit 0

Even parity enable
0:0dd parity
1:Even parity

Stop bit select

- 31 -

0:Stop bit 1 bit
!:Stop bit 1.5 bit

in case of DATA Length 1s 5
!:Stop bit 2 bit

1n case of DATA Length
is not 5

f HOY TO USE 2ND ROM

MSB

PORT ADDRESS "'XCS (OUT)

UART data I/0 port

-----------------~-----------------------------
7 6 5 4 3 2 1 0

--
Bit 7 Data #7
Bit 6 Data #6
Bit 5 Data *5
Bit 4 Data #4
Bit 3 Data #3
Bit 2 Data #2
Bit 1 Data *1
Bit 0 Data *0

rf. Chapter 12 and 15 about more detail information
about UART.

•

- 32 -

,,,-

HOW TO USE 2ND ROM

3.1.4 Interval Timer (ADDRESS AX1EBE ~ith Disable Interrupt)

This interrupt is using RST 7.5. This is the
interrupt from interval timer. (Timer device 1990) This
·interrupt is also used for the key scanning.

In the system's initialization, the interval timer
which is controlled by 1990, is set up as 4m second mode. The
port for 1990 is illustrated below.

PORT ADDRESS

Calendar clock (1990) control port

MSB 7

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Command #2
1
1
1
1

6 5 4 3

Not used
Not used
Not used
Data output
Shift clock
Command output i2
Command output #1
Command output #0

Command #1
0

Command #0
0

0 1
1 0
1 1

2 1 0

timing 64Hz
Timing 256Hz
Timing 2048Hz
TEST mode

In the initialization routine, the command is set .UP
as AX05. It means 4m second interval.

rf. Chapter 15 for more information about 1990

The follow¼ng step is the algorism about interval
timer sequence.

- 33 -

•

HOW TO USE 2ND ROM

1: Disable the interrupt
2: Call hook table
3: Maek RST 7.5,RST 5.5
4: Reverse cursor character for cureor blink
5: Key matrix scanning
6: Return to the interrupted process

- 34 -

/

HOW TO USE 2ND ROM

3.2 ROM SWAPPING METHOD

When you would like to use 2nd ROM, you must write the
following information into the· 2nd ROM's special reserved
area. The special reserved area is located from AX0000 to
AX0047. These area will be used for 2nd ROM starting jump
instruction and IO code, and the file name of 2nd ROM. This
name is displayed like a one of the RAM files on Menu screen
by 1st ROM, ROM #0. The following figure is the explanation
about 2nd ROM special reserved area.

ADDRESS CODE
AX0000 JMP START • 2nd ROM start address ,
AX0003 • • • •
AX0024 RET • Non maskable interrupt ,
AX002C RET • Barcode reader interrupt ,
AX0034 RET • UART interrupt ,
AX003C RET • Interval timer interrupt ,
AX003F • Reserved for RST interrupt ,
AX0040 DB 'A'
AX0041 DB '8' • IO code for 2nd ROM ,
AX0042 DB '2NDROM'; File name which displayed in

• the menu ,

AX0048 START: ; 2nd ROM code

S P E C I A L R E S A R V E 0 A D O R E S S

If these data are implemented correctly, the name will
appears on the 1st ROM's menu screen. So it's easy to switch
the ROM and execute the program in it. When you want to start
the programs in 2nd ROM from the Menu mode of ROM #0, move the
cursor to 2nd ROM's file name on the screen. Then please
press return key. The system will fall into the 2nd ROM
program.

- 35 -

HOW TO USE 2ND ROM

3.3 THE METHOD TO USE 1ST ROM ENTRY FROM 2ND ROM

If you want to use the routines in 1st ROM from 2nd
ROM, at the first, you have to create a special routine in the
higher memory location of RAM (AX8000-AXFFFF> and use it. That
routine swltches the ROM bank with using bank switching method,
and calls the routine in 1st ROM. It is very important for you
that the interrupts must be disabled before you change the ROM
banks. And in addition, as the following sections will tell
you, you have to change the hook table for Power down interrupt
that was changed by 2nd ROM to restart the current process in
2nd ROM program at next power-on. With this hook table for 2nd
ROM, the power down in ROM #0 will cause the fatal error.
Power-off interrupt can not be prohibited. And you have to
consider about the contents of the routine which you will call.
The reason is that some routines in the 1st ROM routine may
enable the interrupts in some parts of their code even if you
disable the interrupts just before switching the ROM banks to
call 1st ROM entry. Therefore you had better change the all
hook tables in the current book keeping area. I suggest that
all hook table should be replaced with previout contents which
were stored by 1st ROM, just before calling ROM bank-switching
routine ,and.restored just after coming back from 1st ROM.

The following program is the sample which uses 1st ROM entry
points from 2nd ROM.

- 36 -

HOW TO USE 2ND ROM

3.3.1 Sample

• ,
• ,
• ,

TITLE Using 1st ROM entry from 2nd ROM

; This sample will enable to use 1st ROM entry from
; 2nd ROM.
; ·Some routines in 1st ROM might enable interrupts,
; so all interrupt
; hook table should be replaced with RET code.
; And restore them after done the 1st ROM calling •
• ,
•
' • ,

Entry
Exit

CENTRYJ:1st ROM entry address
for return condition of 1st ROM

• ,

; <<< SYSTEM define label >>>
BNKCRL EQU "X0A1
STATUS EQU "X0A0

; <<< Main routine>>>

; Bank control port
; Bank status port

ORG "X8000 ; This routine must be stay
"X8000-~XFFFF • ,

ROM1ST: SHLD
LXI
PUSH
LHLD

PUSH
LHLD
PUSH
DI
IN
ANI
OUT

EI
POP
RET

. <<< Return ' RET2NO: PUSH
IN
ORI
OUT

POP

WORKH
H,RET2NO
H
ENTRY

H
WORKH
PSW

STATUS
"811111110
BNKCRL

PSW

from 1st ROM>>>
PSW
STATUS
"'B00000001
BNKCRL

PSW

- 37 -

; Save register HL
; Return address from 1st ROM
; Push stack top
; Pick up 1st. ROM entry
; address
; Push stack top
; Restore HL
; Save all register
; Disable interrupt
; Get current bank status
; Switch 1st·ROM data set up
; Bank select
; Now "X0000-"X7FFF are
; 1s·t ROM
; Enable.interrupt
•
' ; Jump 1st ROM entry

. Save a 11 register ' • Get current bank status ' Switch 2nd ROM data set
• Bank select ' • Now "X0000-"X7FFF are ' • 2nd ROM ' Pick up a 11 register

up

HOW TO USE 2NO ROM

RET

; <<< SYSTEM WORK AREA>>>
ENTRY: ow AX0000
WORKH: OW AX0000

END

•

- 38 -

• ,

I 1st ROM entry address
; HL register saving area

HOW TO USE 2ND ROM

3.4 SEQUENCES IN THE 2ND ROM

1. INITIALIZE

This sequence sets up CSPJ(Stack Pointer),
power-on trap and other interrupt routines. Then it
copies the book-keeping area and system area. finally
some peripherals will be initialized by this routine.

2. RETURN TO MENU

At the first, this sequence selects
RAM, RAM #0 and resets the power-off trap.
to 1st ROM's menu mode.

3. POWER DOWN

the standard
Then it jumps

When power is turned off, the control is
transferred to this sequence. In this sequence, you must
save all registers and circumstances which should be saved
in the stack. So the stack-pointer is most important to
resume the current processing on the next power-on.

The RAM bank number is always stored in RAM #0. On
turning on, the 1st ROM and RAM #0 is selected
automatically. And the bank-switching procedure will be
called in Power on sequence if t~e number of the RAM bank
was not identical to the RAM #0 in the powe~ down
sequence. After changing the RAM bank, all registers will
be restored and pending· procedure will be resumed.
Therefore in the stack, the address of the process which
was abandoned by Power down trap should be stored.

In addition, in order to resume the abandoned process
with 2nd ROM, you have to do special power on/power off
sequence. In power off trap, you should the set the start
routine of the special power-on sequence which switches
the ROM bank. I recommend to use the hook, AXF38F.
Usually, •JUMP to POWER FAIL SEQUENCE• command is st~red
here. In 2nd ROM, however, you have to rewrite this hook
table and call the special power down routine here. In

- 39 -

t.
' HOW TO USE 2ND ROM

it, the address of special power-on routine on the stack.
In this case, the following information should.be stacked
before •HLT• command is executed.

resuming address

starting address of
the ROM switching
routine

Contents of Pointers
<-- CS°TAKSVJ

CSTAKSVJ keeps the SP's value at •HLT·.

Fig 3.1

4. POWER ON

At the first, .the initializing routine in ROM #0
checks the RAM bank number in BANK (AXF308) when power-off
was exe~uted. When power-off was done in non-standard RAM
bank, RAM bank-switching routine is called and switched.
Then, the registers' contents will be restored. If the
address of the process which should be resumed was
stacked, the address will be picked up and executed. When
the power-down was detected in ROM #1, the address of the
special ROM switching routine ought to be stacked above
the address of the process should be resumed. Therefore,
after switching the ROM, the abandoned process will be
resumed.

- 40 -

HOW TO USE 2ND ROM

The following figure are the general 2nd ROM routine control
sequence.

.
: MENU mode of 1st ROM:

:- select 2nd ROM
I
I

V

A

---------------------------------------~---
:--------------

I
I

INITIALIZE

: Main routine of 2nd ROM

RETURN

:-Return

I
I

+-Turn off power switch:

POWER DOWN : . POWER ON .

...
:-Turn on

power switch
V

P O W E R 0 F F

Fig 3.2

- 41 -

r
J r HOW TO USE 2ND ROM

3.5 SUMMARY -- IMPORTANT NOTICE

If you want to make 2nd ROM program, you should take
care of the following manner.

1. Interrupt vector

If you do not want to use interrupt, all interrupt
table should be set with only ·RET• code. But I suggest
you that you had better use interval timer interrupt,
because of saving the battery poWer by using auto power
off function. The counter for this auto power off
function is counted by this interval timer interrupt. If
you do not use this function, the battery consumption may
be more larger than now.

2. Bank of RAM

Do not switch the ROM bank when PC, Program
Counter, points a routine in that ROM. You can guess the
reason and it's not so hard to imagine these bank
switching will cause the fatal problem for system. At the
worst case, the all files which you stored will be lost.
And also you should be careful in stack area, too.

3. PC-8201A book keeping area

The book keeping area are very important for this
system, so you never change that area without careful
consideration. Please read Chapter 7 ·aoOK KEEPING AREA•.

4. Power on/off sequence

Please use power off interrupt to detect the power
down. I suggest that you had better use the real time
interrupt service.to poll the power down signal.

- 42 -

HOW TO USE 2ND ROM

If you want to use 1st ROM entry from 2nd ROM, please
take care of the following point. The all routines rewrite
some work area sometimes. So, if you use 1st ROM entry from
2nd ROM witho~t understanding that routine's internal
specification, the system might be crashed. In addition,
interrupts and ·stack area are other important points. Refer
to 2.3 •The method to use 1st ROM Entry from 2nd ROM• and its
sample program.

- 43 -

HOU TO USE 2ND ROM -

3.6 SAMPLE

TITLE 2nd ROM sample header and useful routine

; <<<
BANK
ATIDSV
PWHOK
RST55
STAKSV
AUTOID
SAVSTK
STATUS
BNKCRL
PWPORT
PORTS

FREE

SYSTEM
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

define label
"'XF3DB
"'XF382
"'XF386
"'XF389
"'XF9AE
""X9C0B
"'XFA00
"'XA0
"'XA1
"'XB8
""XBA

"'X????

; <<< Main routine>>>

START:
JMP

ORG

JMP

ORG
JMP

ORG
JMP

ORG
JMP

ORG
OB

DB

INIT

"'X0024

POWER

""X002C
BARCOO

"'X0034
UART

"'X003C
TIMER

"'X0040
'AB'

'2NOROM'

>>>
; Bank save area
•
' : Power on hook table
; Rst 5.5 hook table
•
' •
' •
' ; Bank status
: Bank control
; 81C55 chip select
; 81CSS port 8

; You must set your ram
: free portion address

: 2nd ROM start address

; Non maskable interrupt
: table
; Power down trap

; RST S.5
; Barcode reader interrupt
: table

; RST 6.5
; UART interrupt table

; RST 7.5
; Timer interrupt table

; IO code for 2nd ROM
; AB is ID code for 2nd ROM

; File name which
; displayed in the MENU

; <<< Initialization of 2nd ROM program>>>
!NIT: LHLO SAVSTK ; Set stack pointer

- 44 -

HOW TO USE 2ND ROM

• ,

SPHL
CALL

CALL
JMP

SETTRP

HINIT
MAIN

• ,
; Set hook for resume
; 2nd-ROM's program,
; and other routine into RAM.
; Hardware initialization
; Goto main routine

; <<< Hardware initialize routine>>>
HINIT: RET ;

•
' • ,
; <<< MAIN ROUTINE OF 2ND ROM>>>
• ,
• ,
MAIN:

; <<< Set up hook>>>
; Set up hook table for 2nd ROM
SETTRP: MVI

• CDEJ ,
COPY:

•
'

OUT
LXI
LXI
MVI
CALL
LXI

.LXI
LXI
CALL
RET

<- CHLJ
MOV
STAX
INX
INX
OCR
JNZ
RET

A,"'800000001
BNKCRL
H,DTBL
D,PWHOK
B,TBLEND-DTBL
COPY
H,TBLHOK
D,FREE
B,HOKE-TBLHOK
COPY

A,M
0
H
D
B
COPY

; Main routine

•
' •
' •
' • ,
• ,
• ,
• ,
• ,
•
' • ,
• ,

•
' • ,
•
' • ,
• ,
• ,
• ,

Select standard RAM
Select!
Set some codes into RAM
for power on sequence

Return code table
Free area of RAM portion
Set length

Read CHLJ
Save CDEJ

Next address set
Decrement counter
Loop until done

; The following code will be copied in RAM
; portion for re-power on sequences
; these part are interrupt hook table •
• ,
DTBL EQU

MVI

OUT

$
A,'"'800000001

BNKCRL

45 -

; These code will be
; copied into RAM
; Bank select!

~

v HOW TO USE 2ND ROM

JMP
BANK!: OS
TSLENO EQU

Pl.JON
1
$

; Jump power on trap
• ,

; -
; The following code will be copied
; in RAM portion for return 1st ROM
• ,
TBLHOK EQU
RETSB: XRA

OUT

JMP
HOKE EQU

; <<< RETURN
RETURN: MVI

• ,

OUT
MVI
STA
LXI
SHLD
LXI
LXI
LXI
CALL
JMP

$
A
BNKCRL

"'X0000
$

>>>
A,"'800000001
BNKCRL
A,"B00000000
BANK
H,"'X0000
ATIOSV
H,RTBL
O,PWHOK
B,RTBLE-RTBL
COPY
RETSB

; Clear A
; Select 1st ROM and
; standard RAM
; Return!

; Select standard RAM
• ,
• ,
• ,
; Reset
• ,
; Rewrite code table
; Interrupt hook table set
; Set length
• ,
; Return to 1st
; ROM's menu mode

; The following code will be copy
in standard ram portion • • , •

•
' RTBL EQU

RET
NOP
NOP
EI
RET
NOP

RTBLE EQU

; <<< Power on
PWON: CALL

LOA
OUT
LHLD
SPHL
POP
POP

$

$

>>>
HINIT
BANKI-DTBL
BNKCRL
STAKSV

PSW
8

- 46 -

; Power on hook

; RST S.S hook

• ,
; Select old RAM bank
•
' ; Restore stack pointer
• ,
• ,
• ,

HOW TO USE 2ND ROM

POP
POP
RET

0
H

; <<< POWER DOWN TRAP >>>
POWER: PUSH PSW

remember

• ,

IN PWPORT
ANA A
JM NTPWFL
POP PSW
DI
PUSH
PUSH
PUSH
PUSH
LXI
DAO
SHLO
MVI

STA
IN

MOV
MVI
OUT
MOV
STA
MVI
OUT
MVI

STA
LXI
SHLD
IN
ORI
OUT
HLT

H
0
8
PSW
H,"X0000
SP
STAKSV
A,0FFH

PWRINT
STATUS

8,A
A,"800000001
BNKCRL
A,B
BANKI-OTBL
A,"S00000001
SNKCRL
A,0

BANK
H,AUTOIO
ATIDSV
PORTS
"800010000
PORTS

NTPWFL: POP
RET

PSW

• ,
• ,

..

; Resume old program

• ,
; Read power down port
; Check
; No power down
• ,
; Disable interrupt

; Save HL
; Save DE
; Save BC
; Save AF

; Now I know stack address
; Save stack
; Reset interva 1 ·timer
; counter
; Set up for next power on
; Save current RAM bank status
; When power on resume,

; this and select RAM bank.
; Save it
; Select standard RAM
; Select!
; Resave old status
• ,
; Select RAM bank 1
• ,
; Set up to come back
; to 2nd ROM
•
' • ,
• ,
• ,
• ,
• ,
; Never 90 on

• ,

; <<< BARCOOEREAOER interrupt>>>
BARCOO: RET ; Return soon

; <<< UART interrupt>>>

--47 -

HOW TO USE 2ND ROM

UART: RET

; <<< Interval
TIMER: LOA

OCR
STA
RET

Timer interrupt
PWRINT
A
PWRINT

; <<< System work area>>>
PWRINT: 08 AX0FF

ENO

- 48 -

; Return soon

>>>
; Pick up timer value
; :oecrement ! !
; Save it
;

; Timer counter n * 1/256Hz

CHAPTER 4

HOW TO USE 2ND/3RD RAM

When you want to change the bank of ~AM, the most
simple method is to do OUT instruction and to jump AX0000 for
warm start. Because book keeping area management is too
difficult to do by yourselves, I think. But if you would not
1 ike to do war·m start, you must manage the book keeping and
system parameter by yourself and use the spe~ial RAM bank
handling routine. You can easily guess that when the bank of
RAM is changed, PC, the program counter must stay lower than
'"'X7FFF. Because bank switch is completely change the code of

-RAM which address '"'X8000 to '"'XFFFF. But the area from AX0 to
'"'X7FFF is used for ROM. The only one way is to make a special
RAM bank switch routine in all RAM banks with same address.
The following illustration will help you to understand. this
curious method.

POP
MOV
OUT
PUSH
RET

HL
A,NEXT
'"'XA1
H

RAM #0

Fig 4.1

POP
MOV
OUT
PUSH

HL
A,NEXT
'"'XA1
H

RAM #1

;Pick up return address
;set next bank status
;change bank
; set return address
;return to specified addres

Same routine is stored in the same position of 2 RAM banks •
. Refer to next
section to write a program at another bank.

- 49 -

HOW TO USE 2ND/3RD RAM

·-In addition you must take care of the STACK POINTER ,too.

- 50 -

HOW TO USE 2ND/3RD RAM

4.1 - READ AND WRITE TO ANOTHER RAM BANK

These are two methods to read /write another bank of
RAM. The first is more simple than second one. But the first
method is some limitation of that performance, because this
method ·uses ROM #1. And the second method is more complex,
but this is more powerful. The size of the second method is
longer than the first one.

4.1.1 Method 1 CUSING 1st ROMJ

These are very useful routines in the 1st ROM.
are GETBNK and PUTBNK.

4.1.1.1 GETBNK CAX7EECJ

These

This routine reads one byte from other banks of RAM.
The GETBNK routine temporarily changes the specified RAM bank,
reads a byte pointed by CHLJ, and returns to the original
bank. Interrupt should be disabled before calling the GETBNK
routine.

Entry

Exit

CBJ = Bank number
AX00:Main bank
AX08:Bank #2
AX0C:Bank #3

CHLJ = Address which byte to read

CDJ = Byte data which read

Altered registers
CAJ,CCJ,CDJ,CFJ

- 51 ~

HOU TO USE 2ND/3RD RAM

4.1.1.2 PUTBNK CAX7EESJ

The PUTBNK routine writes one byte at the specified
address pointed by CHLJ in the specified RAM bank. Similar to
the GETBNK routine, original bank will be. selected after
writing that data. Before using the PUTBNK routine, interrupt
should be disabled.

Entry

Exit

CBJ = Bank number
"'X00:Main bank
"'X08:8ank #2
"'~0C:8ank #3

CHLJ = Location where the byte is stored
COJ = Byte data to be stored

None

Altered registers
CAJ, CCJ, CFJ .

•

- 52 -

HOW TO USE 2ND/3RD RAM

4.1.2 Method 2 CUSING YOUR ORIGINAL COOEJ

When your code is located in upper address
(AX8000-AXFFFF), and you want to read/write a lot of data in
another· bank of RAM, you had better change the target RAM bank
at the lower position of the memory.

(1) Your c6de 1s in RAM #1. And data you want to
read or write 1s in RAM #2.

AXFFFF -------- --------

Your RAM
code #2

AX8000 -------- --------

AX7FFF -------­

ROM

AX0000 --------

Fig 4.2

(2) Change the Bank.

AXFFFF ---------

Your

I
I
I
I •·

code I
I

:<--
AX8000 -------­
AX7FFF ---------

' I

RAM 12:

Fig 4.3

- 53 -

I
I

:<--

Handle
some
data

~···

HOU TO USE 2ND/3RD RAM

(3) Then change again into previous
Bank configuration.

In this case, _you have to disable to all interrupts
before changing the BANK.

- 54 -

HOW TO USE 2ND/3RD RAM

When your code is · located lower addres
(AX0000-AX7FFF), for instance, running a program in 2nd ROM,
please use next method to handle the data in other RAM banks.

(1) The program in 2nd ROM is running with RAM #1.

AXFFFF ---------- ---------
:standard:
I
I

: RAM
RAM

*2

AX8000 ---------- ---------

AX7FFF ----------

2nd
ROM

AX0000 ---------­

Fig 4.4

(2) Read or Write RAM *2 by bank switching
during all interrupts prohibited.

~XFFFF ---------- -----------

RAM : RAM
#2 :standard

I I .

AX8000 ---------- -----------
AX7FFF ----------

2nd
ROM

AX0000 ---------­

Fig 4.5

\

. ,

(3) S~itch again, and resume the previous processing.

55 -

3RD 'RAN

TITLE Read Write routine·for another BANK of RAM

This sampl·e will access another bank of RAM.
There are two routines in this source program.
One is having access in byte by byte by using

,. .
The another one is to access in block of data to use
·special bank switching.
In the architecture of bank, bank 1 (Standard RAM)
is not able to be switch low address
C""X0000H-""X7FFF).

Entry

Exit

Entry

Exit

Entry

Exit

Entry

Exit

HL:Address to be accessed
C :Bank number
B :Data which be read

HL:Address to be accessed
C :Bank number
B :Data to be written

HL:Start address to be changed
A :Bank number
DE:Start address i~ current bank
BC:Byte length to be read
None

HL:Start address to be written
A :Bank number.
DE:Start address in current bank
BC:Byte length to be written
None

Bank number
Bank *1 (Standard RAM) :"X00
Bank *2 CRAM #2) :""X08
Bank 13 CRAM #3) :"X0C

fSTEM label define >>>
EQU ""X0A1 • Bank control port ,
EQU ""X0A0 • Bank status port ,

ORG ""X0000 • This program can be located ,
• any place ,
• This switch should be change ,
• according to the situation ,

EQU -1 • High address C"'X8000-"XFFFF) '

- 56 -

HOW TO USE 2ND/3RD RAM

SLOW EQU 0

; <<< Byte access routine>>>
BYTER: DI

IN STATUS
PUSH PSW

IF
ANI

ORA
ELSE
PUSH
MOV
RAR
RAR
MOV
POP
ANI

ORA
ENDIF

OUT
MOV
POP
OUT
EI
RET

BYTEW: DI
IN
PUSH

IF
ANI

ORA
ELSE
PUSH
MCV
RAR
RAR
MOV
ANI

ORA
ENOIF

OUT

SHIGH
AB11110011

C

PSW
A,C

C,A
PSW
AB11111100

C

BNKCRL
B,M
PSW
BNKCRL

STATUS
PSW

SHIGH
"'811110011

C

PSW
A,C

C,A
"'B11111100

C

BNKCRL

- 57 -

-
; Low address (AX0000-AX7FFF)

; Disable interrupt
; Read current bank status
; Save current bank status

; Clear high address of bank
; switch
; Set new data of bank

; Save curre"t bank
: Pick up new bank data
• ,

Shift 2 bit
Restore bank data
Pick up current bank
Clear low address of bank
switch
Set new data or bank

; Select new bank!
; Read data from some bank
; Pick up before bank
; Select before bank
; Enable interrupt
• ,

; Disable interrupt
; Read current bank status
; Save current bank status

; Clear high address·o-f bank
; switch
; Set new data of bank

; Save current bank
; Pick up new bank data
• ,
; Shift 2 bit
; Pick up current bank
; Clear low address of bank
; switch
; Set new data of bank

; Bank switch!

HOW TO USE 2ND/3RD ~AM

MOV
POP
OUT
EI
RET

M,8
PSW
BNKCRL

; <<< Block
BLOCKR:- DI

PUSH
MOV
IN
STA

access routine >>>

switch

NEXTR:

IF
ANI

ORA
ELSE
PUSH
MOV
RAR
RAR
MOV
POP
ANI

ORA
ENDIF
POP

LDAX
MOV
INX
INX
DCX
JNZ

LOA
OUT
EI
RET

BLOCKW: DI
PUSH
MOV
IN
STA

IF
ANI

8
C,A
STATUS
CURBNK

SHIGH
"B11110011

C

PSW
A,C

C,A
PSW
"811111100

C

B

D
M,A
D
H
B
NEXTR

CURBNK
BNKCRL

B
C,A
STATUS
CURBNK

SHIGH
"B11110011

- 58 -

; Write data
; Pick up before bank
; Select before bank
; Enable interrupt
• ,

; Disable interrupt
; Save length
; Set up bank number
; Read current bank status
; Save current bank

; Clear high address of bank
; switch
; Set new data of bank

; SAve current bank
; Pick up new bank data
•
' ; Shift 2 bit
; Restore bank data
; Pick up current bank
; Clear low address of bank

; Set new bank data

; Pick up length

; Read data
; Write data

; Next position of data
; Decrement counter
; Loop until dQne

; Set previous bank
; Select previous bank
; Enable interrupt
•
'
; Disable interrupt
; Save length
; Set up bank riumber
; read current bank status
? Save current bank

; Clear high address of bank

HOW TO USE :3RD RAM

swit
IRA C
:LSE
'USH PSW
'OV A,C
AR
AR
,ov C,A
'OP PSW
,NI ""B11111100

switch
)RA C
~NOIF ,op B

NEXTW:
MOV A,M
STAX D
INX H
INX D
DCX B
JNZ NEXTW

LOA CURBNK
OUT BNKCRL
RET

: <<< ~stem work area >>>
CURBNK: DB ... X00

ENO

- 59 -

; Set new data of bank

; Save current bank
; Pick up new bank data
• • ; Shift 2 bit
; Restore bank data
; Pick up current bank
; Clear low address of bank

; Set new bank ~ata

; Pick up length

; Pick up data
; Write data
• ,
; Next position of data
; Decrement counter
; Loop until done

; Restore previous bank*
; Select previous bank
•
'

; ~urrent bank data

CHAPTERS

UNDERSTANDING THE RAM FILE CONCEPT

S.1 ·suMMARY

Usually, the RAM files are controlled by the ROM #0,
settled in ROM socket #0 at the shipment. There are many
rules to·use the RAM file. Unless you replace this ROM #0
with your own ROM, ROM #0 checks the RAM file organization and
pointers in the bookkeeping area sometimes, even if you don't
use BASIC, TEXT or TELCOM. (For instance, at Power on and
·sank• command in menu.) If you ignore the standard rules for
RAM file handling, ROM #0 will flush not only the files which
were made by your own application program ,but also the files
which were made by BASIC and TEXT in ROM #0. In order to save
your files from such kinds of accidents, please read following
chapters about .the RAM file handling and understand the
standard rules in PC-8201A.

The two situations were considered for this section.
Someone wants to handle RAM files with the machine language
subroutine in the BASIC m·ode. In this case, opening the file
will be done by a BASIC command, OPEN. And the file will be
closed and deleted by CLOSE and KILL command in BASIC. So the
machine language subroutine will make up the lacking
facilities in BASIC commands. For instance, Insert a data at
the middle of the opened file. In this case, you had better
care about a few pointers only. You needn't know the
directory structure.

But another person might try to make a his (or her)
original application program without using BASIC. He (or She)
might open a file, save data, append data, insert data, delete
data and erase a file with his (or her) own application. In
this case, the name of the data file should be registered by
that application program. So that programmer need to.know the
Directory configuration and many parts of the pointers
playing.

~ 60 -

UNDERSTANDING THE RAM FILE CONCEPT

This section is written for supporting both of them.
The programmer who wants to make a original application
without BASIC, needs much more information than a user who
uses BASIC. But too much data. sometimes confuses a novice
programmer who wants to make a subroutine for BASIC main
program. After long consideration, I decided to obey the
famous common saying, •The greater serves for the lesser·.
Therefore I serve everything what I know. Please find what
you want to know in.the following section.

In these chapters, I tried to describe each section
independently. You, ho~ever, might meet unknown words
sometimes. Please refer to another section or another chapter
at that time. I hope you will make many good application
programs with this document.

- 61 -

UNDERSTANDING THE RAM FILE CONCEPT

5.2 WHAT IS RAM FILE?

In PC-8201A, you can have many files in RAM area at a
time ,like files on the floppy disk. The files are classified
into three suffixes:.OO(cument) .; ,BA(sic) and .CO(mmand).
Hereafter .OO(cument) file is abbreviated 00 file, BA(sic)
file is BA file, and .CO(mmand) file is CO file. And
sometimes the word •ASCII file· is used in place of ·oo file·.

5.2.1 DO File <ASCII File)

The 00 file is created by BASIC, TEXT and TELCOM. Of
course, you can load. a 00 file from I/0 in menu mode. In
BASIC, the ·oPEN• command handles the 00 file. The OPEN
command with.FOR OUTPUT• option makes a new 00 file. OPEN
with ·FOR APPEND• opens the 00 file ·in order to add the data
after the last data that has already been entered. When there
is no file whose name is same as the specified in the ·oPEN•
with •FOR APPEND•, that OPEN command works as the OPEN with
FOR OUTPUT. The OPEN with FOR INPUT opens the specified file
to be ready for sequential reading.

The •sAvE• command with •,A• option or •sAvE• command
with the file descriptor followed the suffix, ·.oo· stores a
BASIC· program as a 00 file. This 00 file is~ sometimes,
called as ASCII (saved program) file. (Note: A SAVE command
without ·,A• option creates a BA file.) In this case, the
BASIC program in the BASIC files area is saved into the 00
files area in the ASCII format. So you can read it in TEXT
mode.c•sAvE• command without •,A• or without the suffix, •.oo•
only registers the file name with the suffix, ·.BA• and
changes some pointers. It does not make a new file. Please
refer to next section about BA files. And I think almost
BASIC interpreter have this •ASCII save function· for the disk
files. Refer to BASIC reference manual if you have another
disk top personal computer's manual.)

- 62 -

UNDERSTANDING THE RAM FILE CONCEPT

' ' I 00 files

I A
I

I
I
I •
I •

Upper

Lower
non-registered V
·BASIC program

or
9aved BASIC

program
•A.BA•

----------------- <-- TXTTAB

Type BASIC program in BASIC mode.
Do •sAvE• command.

SAVE .TEsr· ,A
or •

SAVE .TEST.oo·

....

:Up,:,er
DO file!!

TiST.00

non-registered
BASIC program

or
saved BASIC

program
'A.BA•

I
I

: < -- New 00 f i 1 e
is inserted

:Lower
V

----------------- <-- TXTTAB

Fig 5.1 SAVE with ".DO" or·',A" option

- 63 -

UNDERSTANDING THE RAM FILE CONCEPT

There are 2 type of hidden 00 files in PC-8201A. One
is the ·scRAP• file used in TEXT, and another is the •EDIT•
file used in BASIC. The screen oriented text editor in
PC-8201, named TEXT, has wonderful functions called ·ccp·.
The CCP functions mean SELECT, CUT, COPY and PASTE. (The
detail information about these functions are explained in the
PC-8201A user's guide.) The CUT command or COPY command after
SELECT command makes a temporary DO file. This DO files can
be invoked by PASTE key many times. Though this file cannot
be found in menu level, this file wi 11 be kept unti 1 n'ext
SELECT-COPY or SELECT-CUT will be executed and is not broken
by the PASTE key.

And more good feature is in this DO file. Since the
contents of this DO file is treated as the data from keyboard,
this file can be used in BASIC. After saving a part of a file
in SCRAP with SELECT-COPY function, return to Menu, and invoke
BASIC. The contents of this •scRAP• file will appear by
.PAST• key. Cin the PC-8201A user's guide, this temporary 00
file is called •PASTE buffer·.)

Another one, •EDIT• file, is created by EDIT command
in BASIC. The EDIT command in BASIC falls into the TEXT
editor with the BASIC file. At that time, the BASIC program
is translated in to ASCII format file, .EDIT•, and original
BASIC file is killed. This file is erased when the EDIT mode
is finished by double ESC or F.S, converted into BASIC file
and saved. So no one can find this file at the menu level.

The DO file usually consist of the •ASCII• characters.
And you cannot use the 3 Control Characters, NULL (0),
Control-Z (26) and Back Space (127>. C The ·controt-z• is
sometimes abbreviated as •Az·.> The Control-Z is used as the
End of DO file. So if you store it as a one of the data in
the middle of the DO file, the standard programs, BASIC, TEXT
and TELCOM ,will regard that Control-Z as the End of that 00
file. The data after that Control-Z will be lost. Otherwise
the NULL is used to fill the hole dug by MAKHOL. After
copying or inserting the data in to the hole, some routines
tries to find the end of the data by finding the NULL. T~en a
routine squeezes the NULLs. Therefore the NULL in the middle
of the DO file might cause the serious problems. similarly,
the Back Space has special meaning in DO file. Please don't
use there three Control characters in the DO file. BASIC's
PRINT* command cannot save these control characters in to the
DO file.

NOTE: MAKHOL and MASOEL are name of the routine

- 64 -

UNDERSTANDING THE RAM FILE CONCEPT

• 4

stored in ROM i0. Refer to 'Useful Routines for RAM
file han~ling in ROM i0'.

ex. When DO file is made. in PC-8201A

1. TEXT always creates and modifie9 DO files.

2. SAVE command with ',A• creates a DO file in BASIC.

3. UPLOAD and DOWN LOAD sends or receives a DO file
through RS-232C in TELCOM.

4. DO file can be saved or loaded from CASSETTE and
RS-232C in MENU.

5. OPEN with 'FOR OUTPUT' registers the file name and
insert only End of file character as the 00 file
in BASIC.

- 65 -

r

UNDERSTANDING THE RAM FILE CONCEPT

5.2.2 BA File

The BA file is made in BASIC mode or made by LOAD
function in Menu mode·. There are two types of BA file in
PC-8201A. One-is a ·saved· BASIQ program, and another is
·non-registered· BASIC program. Sometimes the
·non-registered· is called the ·un-saved· BASIC program,
because ·un-saved· will make sense more than ·non-registered·
for a person who knows BASIC very well. The BASIC program
typed just after selecting BASIC mode in menu level, is called
·non-registered· "BASIC file, since the name of the program has
not been registered in the directory area yet. But after
executing ·sAvE· command in BASIC mode, that ·non-registered·
BASIC program becomes a ·saved· BASIC program. (In the point
of view, "SAVE• command in BASIC, the word ·un-saved". and
·saved" are suitable, I think.) The ·sAVE" command in BASIC
·register·s the file name and the starting address in the
directory area. Then the file name can be seen on the display
screen of the MENU or by •Files· command in the BASIC mode.

Meanwhile the ·LoAo• function in MENU can create a
"saved• BA file directly. The "LOAD• function can read a
BASIC program from the cassette, and can ·register" its name
in the directory area. So after "LOAO"ing in Menu, the
program name appears on the Menu screen.

ex. The flow diagram of making BASIC program

1. Select BASIC in menu level

2. Type BASIC program ·

10 PRINT •HELLO•
20 ENO

3. In this point, this BASIC program is called
·non-registered· program.

4. If you return to menu level now, this program is
reserved. You cannot find this program in Menu
mode in this time. Next time you select BASIC in
menu mode, LIST command shows you this program
agaiM. This program will be kept unless you do
NEW command, LOAD ASCI.I saved file in RAM or LOAD.
a file through I/0, cassette and RS-232C.

5. Do "SAVE• command.

SAVE ·rEsr·
or

- 66 -

UNDERSTANDING THE RAM FILE CONCEPT

6.

SAVE .TEST.BA •.

< SAVE ·TEST.oo·
or

SAVE "TEST.,A has another meaning.)

Then ·non-registered" program becomes
"registered· program. This program is called
file simply. And there is nothing in
non-registered program area.

a
"BA"
the

Just after doing SAVE, you can list the program with
LIST command. So you might be confused. But don't worry
about it. The following illustration will help you to
understand not only why LIST command just after SAVE command,
can list the "saved" program, but also why PC-8201A can have
many BASIC programs at a time, I hope.

- 67 -

UNDERSTANDING THE RAM FIL€ CONCEPT

1. You are in MENU mode

I
I

l 00 files

"'XFFFF

----------------- "'XUUUU
I I
I I

: saved BA file :

Fig 5.2

<- BOTTOM
C"'XF980)

2. Select BASIC in MENU and TYPE a BASIC program.
LIST shows you the non-registered BASIC program.

"'XFFFF

: 00 files

--------------- AXYYYY
I
I

non-reg i!,tered:
BASIC program l

----------------- <-- TXTTAB
("XUUUU)

saved BA
file

-----------------<--BOTTOM

Fig S.3

- 68 -

UNDERSTANDING THE RAM FILE CONCEPT

3. Return to menu by MENU command

"'XFFFF

00 files

----------------- "'XYYYY

non-registered:
BASIC program:

----------------- "'XUUUU
I I
I I

: Saved BA file:

-----------------<--BOTTOM

Fig 5.4

4. Select BASIC again. LIST command lists the
non-registered BASIC program which you typed in (2).

--------- -------

I
I

: DO files

"'XFFFF

---~------------- AXYYYY
I I

.1 I

non-registered:
program

----------------- <- TXTTAB
C"XUUUU>

: Saved BA files:

-----------------<--BOTTOM

Fig S.S

69 :-

UNDERSTANDING THE RAM FILE CONCEPT

S. · SAVE •TEST•. TXTTAB sti 11 points the pragram typed in <2>.
So the same list appears on the screen by LIST •

""XFFFF

DO files

----------------- ""XYYYY

TEST.BA

----------------- <- TXTTAB
Saved BA
files

(AXUUUU)

----------------- AX8000
_Fig 5.6

- 70 -

. .

UNDERSTANDING THE RAM FILE CONCEPT

6. MENU and s·elect BASIC again or-· execute NEW command in BASIC.
Now, LIST command lists nothing. Type new BASIC program,
again. LIST lists the pr-ogr-am that you typed just now •

I
• I ... XFFFF

: 00 files

----------------- ... xzzzz
non-r-eg i ster-ed: .

pr-ogr-am ar-ea:

----------------- <- TXTTAB C ... XYYYY)
l TEST.BA

----------------- ... xuuuu
I
I

: Saved BA files:

-----------------<--BOTTOM

Fig 5.7

- -----71 -

UNDERSTANDING THE RAM FILE CONCEPT

7. •
LOAD •TEST.BA• in this case, or select •TEST.BA• directly in
MENU. LIST shows you the program, TEST.BA.

"'XFFFF

=================

: 00 files

----------------- "'XZZZZ

non-registered:
program

--------------- "'XYYYY
I
I

: TEST.BA

----------------- <- TXTTAB
C"'XUUUU)

: saved BA files:

-----------------<--BOTTOM

Figs.a

- 72 -

UNDERSTANDING THE RAM FILE CONCEPT

BASIC interpreter regardes
indicates the current BA file.
program which was saved just now
TXTTAB.

that the current TXTTAB
So LIST command lists the

because of specified by

The BA file can be created in BASIC mode and can be
LOADed in BASIC mode and MENU mode. Refer to the PC-8201A
user's guide and reference manual. And BA file is executed
with BASIC interpreter at the menu level by selecting the BA
file directly, as you know. In other words, when you select
the BA file name appeared on the MENU, PC-8201A invokes the
BASIC interpreter, LOAD that BA file and RUN it automatically.

- 73 -

I

UNDERSTANDING THE RAM FILE CONCEPT

S.2.3 CO File

The CO file is made in BASIC with BSAVE command or can
be loaded and saved from the cassette tape in MENU mode. The
CO file is, sometimes, called ·machine language· file. It can
be executed directly like a command in menu level,when
·Execute· address was specified in BSAVE and the start address
is higher than the second parameter in the latest ·cLEAR•
command in BASIC. The default value is AXF380. So no CO file
can be executed directly from the menu level without CLEAR
command. The CO files are located above the DO files.

- 74 ~

UNDERSTANDING THE RAM FILE CONCEPT

..
5.2.4 The Order Of The Files In RAM

The order of these files in PC-8201A is fixed.

----------------- ~XFFFF

=================
CO file9

00 files

------------~----
I
I

non-registered:
BASIC program :

: BA file9

----------------<-BOTTOM

Fig 5.9 the order of the files in RAM

Of course, the size of each file is dynamic.

- 75 -

..

CHAPTER 6

DIRECTORY STRUCTURE

6.1 DIRECTORY CONFIGURATION PER ENTRY

The directory area is allocated in th~ middle of the
bookkeeping area. The top of the address is F84F in
hexadecimal. The directory configuration is shown below.

OIRTBL:

NULOIR:
SCRDER:
EDTOIR:
USRDIR:

<--------- AXF84F BASIC
FILER
TELCOM
(Directory
(Directory
(Oirector-y
<Director-y

• •

for
for­
for­
for-

non-r-egister-ed pr-ogram)
SCRAP)
EDIT command)
user--defined files)

((End-of-directory)) AXFF

r-f. The non-r-egistered progr-am means non-saved BASIC
. program. Refer- to ·eA file· in the pr-evious section.

•Directory for- SCRAP• and ·oirectory for- EDIT command•
ar-e explained in ·oo·file·.

Each slot in the directory consists of 11 bytes, 1
byte flag, 2 bytes address and 8 bytes file name. The first 6
slots in directory ar-ea ar-e initialized by INIT routine at the
COLO START.

- 76 -

DIRECTORY STRUCTURE

Oirf slot's configuration per entry

Dir-Y f 1 ag
Adcfiel d
Fi 1e
· Tota 1 11 bytes.

(1 byte)
(2 bytes)
(8;bytes)

Bi~gnment of Directory flag

Bi-Master bit
Bi ASCII bit
Bi Binary bit
Bi File-in-ROM
Bi' Hidden fi 1 e
Bi

(1 when directory valid)
(1 when ASCII-text file)
(1 when Machine-language
(1 when file is in ROM)
(1 when file is hidden)

Bf RAM file open flag

file)

Sj for internal use (always set to 0 normally)

VPf address-field

B, e - Address which TXTTAB must be set to
oe - Beginning address of file
c,e - ditto

,XTTAB in BASIC shows the lowest byte of the file,
the fir~ink pointer in the BASIC program file. Please
refer to her manual to understand what 'link pointer' is,
if you wco handle the BASIC programs.

:nitialized values for first 6 slots in Directory
are shooelow. The first 3 files are stored in ROM and
displaye,the menu screen. (These 3 files are called the
'standar~ograms".) Next 3 files are used for hidden files
created AM area. These hidden files will not appear on
the Menueen. Refer to previous section, 'DO file' and 'BA
file'. characteristics· of these hidden files are
describeiere.

- 77 -

DIRECTORY STRUCTURE
•• ·-1

rf. First 6 slots in Directory (Initialized data
stored in AX6C8E)

08 AB1011000
DI.J Start address of a=p.sic
DB 'BASIC

,

DB 0

DB AB101-10000
01.J Start address of TEXT
08 'TEXT

,

DB 0

OB ""B10110000
01.J Start address of TELCOM
OB 'TELCOM'
DB 0

;for non-registered program

DB "'B10001000
DI.J 0
DB 0 •
DB 'XXXXXXX'

;for SCRAP file

OB ""B11001000
DI.J 0
08 0
DB 'YYYYYYY'

;for EDIT command of BASIC

DB AB01001000
DI.J 0
OB 0
DC 'ZZZZZZZ'

78 -

-~

~PTER 7

~GANIZATION

~ FILES

~pter 2 to understand the whole of the

I are stored with the fixed order. It
.Jes, the BASIC programs which has the
j at the bottom of the RAM area, near
~II files, the suffix is ".00") are
files. And CO files, the Machine

,CO" are saved above the DO files, near
(llustration will help you understand

- 79 -

RAM ORGANIZATION

1. There are S files in RAM.

AXFFFF ~---------------
:Bookkeeping

Area
I ""
I
I
I

---------------------------------:Free area &
:Data area

MACHIN.CO

DIARY.DO

MEMO.DO

GRAPH.BA

GAME.BA

Fig 7.1.

- 80 -

I
I

lUpper

I ,.

I
I

:Lower

I
I

V

: <- BOTTOM

RAM ORGANIZATION

2. Add new BASIC file, GOLF.

-• -

----------------- <---
A I MACHIN.CO I

Moved
----------------- up

Upper
I DIARY.DO I

I MEMO.DO I

---------------- <---
I
I
I GOLF.BA :<-- Added here I

---------------- <---·
Lower I GRAPH.BA I

Not
I ----------------- Changed I

V I I
I .I
I GAME.BA I

----------------- <---

Fig 7.2

- 81 -

RAM ORGANIZATION

--~ 3. Add new ASCII file, ADORES.

,.

Upper-

Lower-

V

----------------- <--
l MACHIN.CO

I
I
I
.'

----------------- Moved

: DIARY.DO

: MEMO.DO

: ADORES.DO

GOLF.BA

up

I ,.
I
I

<--
<-- Inserted

here
<---

-------------- Not
changed

GRAPH.BA

: GAME.BA

-----------------<----
Fig 7.3

-·82 -

RAM ORGANIZATION

-4

Add new CO file, CHAR.CO

...

Upper

: CHAR.CO l<-- Inserted here

----------------- <---
: MACHIN.CO

: DIARY.DO

l MEMO.DO

: ADORES.DO

I
I

Not changed

Lower : GOLF.BA

V
: GRAPH.BA

l GAME.BA

----------------<----
Fig 7.4

A new BA file is created above the old BA files.
Otherwise a new DO file is stored below the lowest DO file,
just above the BA files. A new CO file is made just ABOVE the
CO files. (Just below the address which is pointed by VARTAB.
Refer to "Bookkeeping area".)

- 83 -

RAM ORGANIZATION

And you know that the non-registered BA file is
created between the BA files and DO files, as described in "BA
file" of "What is RAM files·.

ex.

Non-registered program is created just
under the ASCII file.

: ASCII1.DO

I A
I

I
I

non-registered:
program

Upper

----------------- Lower

: BASIC2.BA V

Fig 7.5 Position of non-registered program

- 84 -

RAM ORGANIZATION

The detail information· about
configuration is described in ·Directory
bookkeeping area and the directory area are
top of RAM area.

the directory
structure· • The

situated at the

"'XFFFF ----------------- <---.

"'XF977 I
I

I I I
I I I

: Directory area: bookkeeping

"'XF84F
I
I

"'XF380 ----------------- <---

Fig 7.6 Directory position

- 85 -

area

RAM ORGANIZATION

7.2 BOOKKEEPING AREA

The book-keeping area is lQcated at the top of the RAM
area. The area is divided into 3 parts. The first part,
lowest part from AXF380 to AXFBBF, includes the pointers and
flags for RAM file handling. And many BASIC interpreter's
flags, pointers and temporary data area are here. As you
know, the directory area is included in this part.

The second part, AXFBC0 to AXFE3F, is used for the
line buffer. of LCD display. BASIC uses this area in the
Screen Editor function, also. But the concept of this line
buffer is different from the VRAM in the traditional disk top
personal computer. Only the character- codes are stored in
this buffer. There is no attribute data. The attribute data
is stored in another table. Refer to the chapter 9,
explanation about the LCD driver.

The third part, AXFE40 to AXFFFF, is reserved by BIOS.
The switches and data storage for RS-232C, Key Board and other
I/0 drivers are stored here.

AXFFFF ----------------
' I
: Part III

AXFE40 ----------------
' ,
l Part II

AXFBC0 -----------------

BIOS's data

LCD buffer

' I : BASIC's data
: Part I :. File handling data

Directory
AXF380 -----------------

Fig 7.7 Bookkeeping area

-~-

RAM ORGANIZATION

7.2.1 Part I (For RAM File Handl1ng And BASIC>

NOTE: . .
In this section, the articles about the

pointers and flags for BASIC are omitted, because this
document is written for the programmer who wants to
understand the many good features in PC-8201A, in
order to utilize this machine with 2nd ROM or user's
machine language program. Not written for the people
who wants to understand the internal specification of
PC-8201A's BASIC interpreter. So I think this
document is unfriendly for such kind of people.
Please refer to another manuals and textbook if you
need understand the BASIC interpreter.

There are many important pointers are stored in this
area for RAM file handling. When some of them are mis-handled
in your routine, all RAM files might be deleted at next
operation of the standard ROM,ROM #0, for instance, power-on
or next SAVE command in BASIC. Because the standard programs
(BASIC, TEXT and TELCOM) and operating system (represented by
Menu), believe that these pointers point the right address.
So if a pointer which should point the lowest address of the
DO files, points one byte smaller than it should point
correctly, TEXT might not invoke any DO files in it. Please
understand the purpose of each pointer and make sure that each
pointer has a right value any time.

The important pointers for RAM files are listed below.

ADDRESS <Hex> NAME SIZE (Decimal)

F380 FSIOSV 2
F384 HIMEM 2
F459 STKTOP 2
F450 TXTTAB 2
F84F DIRTBL 33
F870 NULDIR 11
F87B SCROIR 11
F886 EOTOIR 11
F891 USROIR 231
F9B0 BOTTOM 2
FA9A MEMSIZ 2
FABF FRETOP 2
FAE1 ASCTAB 2

- 87 -

RAM ORGANIZATION

FAE3
.FAES
FAE7
FAE9
FB63
FB67

7.2.1.1 FSIDSV

ADDRESS
SIZE

Purpose

8INTAB
VARTAB
ARYTAB
STREND
FILTAB
NULBUF

"'XF380
2 bytes

2
2
2
2
2
2

First power on or not

If this FSIDSV is not identical' with FRSTID
("'X8A4D), the initialization routine falls into the
·coLD START• routine. In this case, the all data and
files in PC-8201A are cleared. The ·coLD START•
routine sets FRSTID here after done the
initialization. And no one may not change this ID
value.

7.2.1.2 HIMEM

ADDRESS
SIZE

PURPOSE

"'XF384
2 Byte

Highest memory available memory

This pointer keeps the highest memory address
available for BASIC. The area between the address in
this pointer and "'XF380 is reserved for the machine
language file or another user's special working area.
No standard program will break the data in this area
except POKE statement in BASIC. (The •poKE• statement
can write on anywhere in the RAM which is selected
now. So be careful with the address in POKE statement

- 88 -

RAM ORGANIZATION

when you use it for s~ori~g your machine language
program or character data into RAM area.) The "HIMEM"
can be changed by the second parameter of "CLEAR"
statement in BASIC. Refer to the PC-8201A BASIC
reference manual.

7.2.1.3 TXTTAB

ADDRESS
SIZE

PURPOSE

AXF450
2 bytes

Pointer to beginning of current
BA file

This pointer is valid in BASIC mode. In
another mode, TEXT or TELCOM mode, this pointer keeps
the latest value used in BASIC. In BASIC mode, the

• address of the first link pointer is stored here. And
this value won't be changed in BASIC mode unless
"LOAD" command is executed to load another BASIC
program, or "NEU" command. Almost internal routine
for BASIC interpreter refers to this pointer to know
the top of the current program. And this pointer 1s
very important when a BA file is deleted, too. You
cannot kill a BA file in BASIC mode when this TXTTAB
points the BA file. Refer to "How to delete a BA
file".

7.2.1.4 STKTOP

ADDRESS
SIZE

PURPOSE

AXF459
2 bytes

Top location to use for the stack

Initially set up by INIT routine in ROM #0
according to memory size to allow for 256 bytes of
string space. This value will be changed by a CLEAR
command with the first argument. The difference
between MEMSIZ and STKTOP means total string space.

- 89 -

,,-

RAM ORGANIZATION .
The 2 byte space between MEMSIZ and FILTAB is kept for
·vAL• function in BASIC. The ·vAL• function sets ·0·
at the end of the strings on evaluating the strings.
So this 2 bytes area prevent to over-write the FCB
area above the FILTAB.

7.2.1.5 OIRTBL

ADDRESS
SIZE

PURPOSE

"XF84F
33 bytes

directory for program in ROM

The names and pointers for the programs 1n ROM
are stored here. They are BASIC, TEXT and TELCOM. If
you don't want to use these standard programs, you can
use this area for your programs. This area will be
kept until •coLO START• is invoked. Refer to
·oirectory construction.·

7.2.1.6 NULOIR

ADDRESS
SIZE

PURPOSE

. "XF870
11 bytes

Directory for non-registered program

This area is kept for internal use. The
"non-registered program· that means the BASIC program,
just typed after selecting BASIC, uses this area for
pointing the starting address. There is a detail
explanation about the 'non-registered· program in the
previous section, 'BA file". And also, refer to
"Directory Construction".

- 90 -

RAM ORGANIZATION

7.2.1.7 SCRDIR

ADDRESS
SIZE

PURPOSE

"'XF87B
11 bytes

•

Directory for SCRAP

The TEXT editor can do •sELECT•, •cur·, •copy•
and •pAsr•. This directory is used for this
·temporary file•, SCRAP, in TEXT. This file is
created when some characters are ·sELECT.ed and
•coPY.ed or •cur·. (Refer to PC-8201A user's guide
•sELECT•, •cur•, ·copy• and •PAST ••) This file is kept
even if you exit from TEXT. And you can use it in
another programs, BASIC, TELCOM and so on. If you CUT
or COPY without SELECT, the starting address points
Control-Z. It means that the SCRAP files is empty.
Refer to •Do file• and •Directory Construction".

7.2.1.8 EDTOIR

ADDRESS
S-IZE

PURPOSE

"'XF886
-11 byte!!

Directory for EDIT in BASIC

The EDIT command in BASIC makes a temporary DO
file. This slot is used for this file. Refer to •no
file· and ·Directory Construction·.

7.2.1.9 USRDIR

ADDRESS
SIZE

PURPOSE

"XF891
231 bytes

Directory for user's files (21 slots)

This area is used for BA files, DO files and
CO files which user makes. 21 files can be registered

- 91 -

/

RAM ORGANIZATION

•
here at most. The end of directory area is indicated
by ·--xFF·, ·Directory search stopper·. Refer to·
Directory Construction·.

7.2.1.10 BOTTOM

ADDRESS
SIZE

PURPOSE

"'XF9B0
2 bytes

Bottom address of RAM

The lowest available RAM address is saved
here. You can know how many RAM chips are installed
in this RAM bank easily by checking this pointer.

7.2.1.11 MEMSIZ

ADDRESS
SIZE

PURPOSE

space.
ca 11 ed
FRETOP

"'XFA9A
2 bytes

Highest location in Memory

This pointer points the top ~f the string
The area between the MEMSIZ and FRETOP+l is

·used string space·, and the area between the
and STKTOP +1 is ·Free string space·.

7.2.1.12 FRETOP

ADORESS
SIZE

PURPOSE

"'XFABF
2 bytes

Top of the string free space

The highest address (closer to ... XFFFF) of the

- 92 -

RAM ORGANIZATION

string free area is kept in thi9 pointer.
address is kept by STKTOP + 1.

The lowest

7.2.1.13 ASCTAB

ADDRESS
SIZE

PURPOSE

... XFAE1
2 bytes

Pointer to start of ASCII files

This pointer points the first byte of the
first 00 <ASCII> file.

7.2.1.14 BINTAB

ADDRESS
SIZE

PURPOSE

... XFAE3
2 byte9

Pointer to 9tart of COMMAND file

The lowest address of the first CO file is
kept here.

7.2.1.15 VARTAB

ADDRESS
SIZE

PURPOSE

... XFAES
2 bytes

Pointer to simple variable space.

This pointer keeps the start address of
VARIABLE TABLE area just above the CO files.

- 93 -

- I

RAM QR{;ANIZATION

7.2.1.16 ARYTA8

ADDRESS
SIZE

PURPOSE

"XFAE7
2 bytee

Pointer to beginning of array table

The ARRAY TABLE is allocated just above the
VARIABLE TABLE. This points the beginning address of
this ARRAY TABLE.

7.2.1;17 STREND

ADDRESS
SIZE

PURPOSE

"XFAE9
2 bytee

End of storage in use

This pointer keepe just above the address of
ARRAY .TABLE. The area between this pointer and the
stack pointer can be used as the FREE area.

Note:

When you ~ill use this FREE area, you have to consider
about the stack area. As the stack pointer points the
current bottom of the stack area, you had better about
120 bytes for the feature etack operation.

7.2.1.18 FILTAB

ADDRESS
SIZE

PURPOSE

/

"XFB63
2 bytes

Point to address of file data

This points to the starting address of the

- 94 -

RAM ORGANIZATION

file data area. The file data area consists of the
FCB address. If 1 MAXFILES 1 command in BASIC was not
executed after 'COLO START", this table has 4 bytes.
The first 2 bytes points the NULL files buffer.
CNULBUF points the same address.) The second 2 bytes
points the #1 file's FCB address. Refer to the
following section about FCB.

7.2.1.19 NULBUF

ADDRESS
SIZE

PURPOSE

AXFB67
2 bytes

Points to address of file #0 buffer

The buffer for file #0 , sometimes called
NULBUF, is allocated just above the file data table,
pointed by FILTAB.

- 95 -

RAM ORGANIZATION

AXFFFF -----------------
Bookkeeping

I
I
I
I

: <--- AXF380

----------------- -
User's machine
area

I
I

or
Device code

FCB
C #1 -- #n)

Nul buffer
<Fi 1 e #0 >

: FCB address

(2 Bytes)

l·
I
I

<-- HIMEM

: < -:-- Address is

I
I

stored in FILTAB

: <-- NULBUF

I
I

: <-- FIL TAB

---------------Used : <-- MEMSIZ
String area

---~-----------
Free
String area

I
I

: Stack area
I
I

I
I

Free area

: Array data

- 96

/

: <-- FRETOP

I
• I

: <-- STKTOP
I
I

:<- Stack Pointer

I
I

I
I

: <-- STRENO

: <-- ARYTAB

.I
I

: Simple
l Variables ·,
I

I
I
I
I

l <-- VARTAB.

: CO fi 1 es I

I

l <-- BINTAB ,-----------------
l DO fi 1 es

.I

'

BA files

I
I

l <-- ASCTAB

I
I
I
I

l<-- TXTTAB
I
I

:<-- BOTTOM

tig 7.8 Pointers and ROM configuration

- 97 -

RAM ORGANIZATION

7.2.2 Part II < VRAM Area For LCD)

ADDRESS

SIZE

PURPOSE

640 by~es

VRAM

This area is used for the VRAM of LCD (liquid
Quristal Display). In this area, the data is stored
as the character code. C ANSI character code. Refer
to •APPENDIX A4• in PC-8201A Reference Manual.> The
LCD driver, installed just below the LCD panel, gets
this character code and displays it on the LCD. The
320 characters C 40 by 8) can be shown on the LCD
panel at a time. So only second 320 bytes, from
AXFD00 to AXFE3F, are used for VRAM. The first 320
bytes, from AXFBD0 to AXFCFF, are used only when TERM
mode is selected in TELCOM. (You can find •PREv• at
the bottom of the screen in TERM mode. The ·PREV•
shows you the previous screen in TERM mode. Refer to
·chapter 8 TELCOM• in PC-8201 User's Guide. The

• •PREVIOUS• is the first TERM SUBCOMMANDS.>

The data in VRAM appears when LCD· driver is
turned on. Refer to Chapter 9 about the control
sequence for LCD management.·

7.2.3 Part III (Bookkeeping Area For BIOS)

ADDRESS

driver,
working
to know
in this

This area includes the data area for RS-232C
the buffers relevant to Key Board driver and

area for LCD driver. Refer to Chapter 9 - 15
how to use the peripheral drivers and the data
area.

- 98 -

RAM ORGANIZATION

7.2.4 FQ Control Block)

YJ the FILTAB points the lowest
file con~ata area. It doe~ NOT mean
points tht of the starting address of
Offset, ifile is opened.

address of the
FCB. The FILTAB
the FCBs, FCB

e~B and FCB

Dnory (in hexadecimal)

F: 6E F1 77 F2 •• • • • • • •

Tht 2 bytes (AXF16E) points the starting address
o1 FCB of #0 file (NULL buffer). The second 2
b)'XF277) is the top address of the FCB for the
fi. These starting addresses are called FCBOFF
CFset address).

T~area for NUL and file #1 are allocated by the
INITIALIZ~ine in ROM #0. The 2nd and more FCB area will
be allocatthe BASIC language, MAXFILES command. Refer
to PC-820»rence manual.

The FCB ca of 9 ~ytes parameter area and 256 bytes
buffer ancept for NULBUF. NULBUF consists of only 256
bytes bufna. The purpose and the size of the parameters
ar• listew. Since this FCB can support the Floppy Disk
file, you =ind some meaningless parameters for RAM files.
Of cause, 1n use them for own your purpose if you wish.

(1) FL.MOO

Address: FCBOFF+0
1 byte Size:

The file mode of the FCB. If this byte is not
se~is FCB is not used in BASIC. If you obey the
BA.rule, you have to set non zero value here when
yo~ that fi 1 e.

1 INPUT on 1 y
2 OUTPUT only
8 APPEND only

- 99 -

RAM ORGANIZATION

(2) FL.FCA

ADDRESS:
SIZE:

FCSOFF + 1
1 byte

The· first cluster allocated to file. In RAM file
handling, this parameter has no meaning.

C3) FL.LCA

ADDRESS: FCBOFF + 2
1 byte SIZE:

The last cluster accessed. For RAM file open, this
and next byte is used for the storage of the Directory
address of·that RAM file.

<4> FL.LSA

ADDRESS
SIZE

FCBOFF + 3
1 byte

The last sector accessed. For RAM file open, this and
previous byte is used for the storage of the Directory
address of that RAM file.

CS) FL.OSK

ADDRESS: FCBOFF + 4
1 byte SIZE

Disk* of the file or Device IO. The table listed
below is the Device IO table in PC-8201A.

Device name IO number
LCD ""XFF
C CRT ""XFE)
CAS ""XFD
COM ""XFC
< WANO ""XFB)

LPT ""XFA
RAM ""XF9

CRT and WANO is option I/0.

C6> FL.SLB

- 100 -

RAM ORGANIZATION

ADDRESS:
SIZE:

FCBOFF + 5
1 byte

Size of last buffer read.

(7) FL.BPS

ADDRESS:
SIZE:

The
the
FCB.

(8) FL.FLG

ADDRESS:
SIZE

FCBOFF + 6
1 byte

position in buffer for
file *· One of the

FCBOFF + 7

. -

both
most

PRINT and
important

INPUT with
parameter in

This byte and next byte are used for the offset
address of the RAM file which is opened now. For
example, in the •INPUT• mode file, this offset address
is advanced by 256 bytes when the block-read command
reads 256 bytes from the file into the buffer in FCB.
So in reading or writing to the RAM file (00 file),
the starting address and this offset show the next
byte should be read or written.

(9) FL.OPS

ADDRESS:
SIZE:

FCBOFF + 8
1 byte

High byte of the offset address for RAM file.
to FL.FLG.

C10>FL.BUF

ADDRESS:
S~ZE:

FCBOFF + 9
256 bytes

Buffer for the file.

- 101 -

Refer

CHAPTER 8

RAM FILE HANDLING

In this chapter, the technic to manage the RAM file is
described. The main purpose is to create or delete a RAM file
for the applications stored RAM area or 2nd ROM. As described
before, if there is some violation in standard rules of RAM
file handling, the file you made (or sometimes all files in
the RAM) will be lost by the standard manipulation. (The
·standard manipulation· means the file handling or operation
with Menu, BASIC, TEXT or TELCOM in the ROM #0.)

There are many useful routines to make up these
violation in standard rules in ROM #0. But using ROM #0 from
ROM #1 will reduce the speed of the application. If you want
to handle the RAM file without ROM #0, please make sure 'What
you should do• in this chapter. And refer to 1 Bookkeeping 1

and ·oirectory structure·.

NOTE: The another technical manual for PC-8201A has
been available already. There are many information
about the RAM file handling routines in ROM #0 in it.
For example, •oPEN RAM FILES", 'KILL ASCII FILE",
'READ A CHARACTER FROM A RAM FILE 1 and 'CLOSE ALL
FILES•. If you will use your application or
subroutine with ROM #0, you had better refer to that
manual.

- 102 -

RAM FILE HANDLING

8.1 WHAT SHOULD WE DO IN RAM FILE HANDLING

In the ·Directory structure· and ·Bookkeeping area",
many rules about the RAM file handling are described. I do
explain again about the important r~les.

1. Make sure that there is enough free area

When a new file is opened, or new data is appended
and inserted, please investigate whether there is enough
free bytes in the current RAM bank. Especially, the free
area requested in OPEN is sometimes ignored. At least, one
byte is necessary for OPEN a DO file. 3 bytes for CO file.
Refer to 'What is RAM file· and following sections.

You can find where the free space is in the figure in
·Bookkeeping are·. The difference between the pointer
•sTREND• and the value in the stack pointer indicates the
free size. But don't forget that some area will be used for
the stack operation in that free area. For instance, the
make-room routine used in BASIC and TEXT recognizes that the
current free space is less 120 bytes than that difference.
In other words, 120 bytes is always maintained for the 60
stack area when new data is stored. Refer to ·MAKHOL• 1n

. ·useful Routine For RAM File Handling In ROM #0·.

2. ·Register file name correctly

The contents of the directory is described in
·oirectory construction·. No one forgets to register the
file name in it. But someone forgets to set up the
directory flag byte and the starting address of the file.
If you don't set the directory flag, the file might be
deleted by Menu or another operation. If you write a bad
starting address in the address field, the link of the
directory and the files will be lost. By the result, you
cannot select a file properly in the Menu mode or PC-8201A
is hung up. Any way, the directory flag and address field
have very important meaning. Please refer to the •Directory
construction· and following sections.

3. Maintain the order of the files

In order to maintain the order of the file, we have to
do a special trick in setting the starting address of the

- 103 -

RAM FILE HANDLING

new file. For a new DO file~ we-have to set ASCTAB -1 as
the starting address of that new file at the directory area.
And for a new BA file, you have to register the ASCTAB -1 in
the ·non-registered· file's directory area and insert double
NULL code there. That new BA file will be created at ASCTAB
-1 and will have the starting address, ASCTAB - 2. In
making both of a new DO file and a new BA file, LNKFIL
should be executed before end of its process •. Refer to
·useful Routines for RAM file handling in ROM 10• to
understand what is LNKFIL.

4. Make and shrink a hole safely

The calculation of the free space is very important.
And you have to maintain the stack area when you make a your
room. And one more important thing is the management of the
pointers. Tne reason why many programs, Menu, BASIC, TEXT
and so on, can use the same RAM area safely is that they
adjust the pointers for RAM every time when they change the
RAM configuration. For example~ BASIC deletes ~ BASIC
program file, he changes many pointers, STRENO, ARYTAB,
VARTAB, BINTAB and ASCTAB. And he turns off the directory
flag in order to indicate that the slot in the directory is
not used now. Refer to MAKNOL and MASOEL in ·useful·
Routines for RAM file handling in ROM 10.·

S. Insert the promissory byte in the file

When you open a DO file, you have to enter one byte
data at least. The data is Control-Z C~X1A), it shows the
end of file in RAM. Some~imes this promissory byte is
forgotten. So the routine which makes up the starting
address in the directory area is confused. Simultaneously
BASIC needs 2 NULL bytes at the end of the file. Otherwise
CO file requires the 6 bytes file header at the top of the
file. Refer to ·what is RAM file·.

6. Make up the starting address in the directory

When you changes the RAM configuration, you have to
care not only the pointers but also the starting address ~n
the directory area. It is easy to image that the starting
address in the address field of all the 00 files should be

- 104 -

RAM FILE HANDLING

.
changed when you make a new BASIC file. (BASIC file 1s
created under the lowest DO file. Refer to "Memory Map
about RAM files") And when some data are inserted in
"A.DO", a DO file, the starting address of the DO file and
CO file located above "A.DO" should be changed. Refer to
"LNKFIL" in the "Useful Routines For RAM file Handfing in
ROM #0". You can get the know-how to make up- the starting
address in the directory area. ·

7. Bad data in 00 file

You cannot store the data which include the character
whose code is 0, Axe and AX1A. The ·0· is used "NULL" to
indicate the hole which is not used. Or double NULL means
the end of the BA file. The ·Axe· is used "Back space".
The "A1A" is regarded as the end of the 00 file, as you
know. Refer to "DO file".

- 105 -

RAM FILE HANDLING

8.2 HOU TO MAKE NEU FILE

8.2.1 How To Register The New File Name

At the first, the new file name should be registered
in the user's directory area when you create a new file. The
user's·directory area is started from USRDIR. And the next
byte of the user's directory area, the end of the directory
area, has AXFF (255 in decimal). This byte is called
•Directory Stopper·. The used slot starts with the number
larger than AX80 as the directory flag. Therefore it is easy
to find the free slot. Refer to the sample program shown
later.

You had better compare the new file name with the file
name which is existed already. Two files which have same file
name sometimes occur a serious problem. So during searching
the free slot, the existed file name should.be checked. And
if there is a same file name, you had better delete it before
making new file or abandon to make a new file. ·

If you succeed to find a free slot in the user's
directory area, you have to register the directory flag, the
address of the file and the file name. In this time, you have
already known the file name. And you can set the directory
flag now. (You can get the detail information about the
Directory flag in the section, DIRECTORY STRUCTURE.> The
address of the file will be fixed later. Because the way to
get the address for the new file is depend on the file type,
00 file, BA file and CO file. Any way, don't forget to set up
the directory flag when you register the new file.name.
Otherwise someone, Menu, BASIC or TEXT and so on~ will destroy
your new file without any caution.

Refer to •Directory construction·.

8.2.2 How To Make DO File

If you have already registered the file name and
directory flag at the slot in the directory area, now the only
one information lacking in the new directory area 1s the
address of the new DO file. If you didn't read "Hou to
Register The New File Name" and you have not set the file name

- 106 -

F'
l RAM FILE HANDLING

........
and directory flag yet, please read that section and make up
them first.

Usually the new DO file is created just above the
ASCTAB, the lowest address of the-:existed DO files. Refer to
the figure in the ·what is RAM file· to make sure your image.
If you go with the standard rule which Menu, BASIC and others
in ROM #0 is used, you can copy the contents of the ASCTAB-1
as the starting address of the new files. Then the
registration of the new DO file is done completely. The
reason why we have to use ASCTAB-1 instead of ASCTAB is to
maintain the order of the files. The LNKFIL, to make up
starting address in directory area, searches the file name
from top to end and links the starting address of each file.
For LNKFIL searches the directory from younger address to
older address and older file has younger address, the order of
the DO file will be swapped if you use ASCTAB instead of
ASCTAB-1. Refer to •LNKFIL• in •useful Routine for RAM file
handling in ROM #0".

But you have to do two more steps for that new DO
file. One is to insert the end of file flag at the bottom of
that new DO file. Another one is, as you know, to make up the
starting address of other files in the directory area.

There is no DO file whose size is zero, because the
final character of the DO fiie should be AZ (AX1A, 26 in
Decimal). In other words, the AZ indicates the End of File of
the DO file. So the DO file will spend one byte at least. If
you only want to open the new DO file without any data, you
have to insert a AZ at the starting address. If you want to
save some data now, you have to append a AZ at the end of the
data. Never forget to insert a AZ at the end of the file.
Otherwise, next RAM file operation might destroy the all RAM
files.

In order to make a room for the new file, a convenient
routine is in the ROM #0. Its name is MAKHOL, MAKe HOLe.
This routine makes a hole from the specified point and whose
size can be decided by the contents in CBCJ register. Refer
to ·MAKHOL• in ·useful Routine For RAM file handling in ROM
#0·. The concept of the MAKHOL is shown briefly in that
section.

If there is no free area in RAM, and you cannot insert
a AZ, you cannot continue to enter data to the file. And, of
course, you have to clear the directory flag for next user.

To make up the starting address in the directory area,
the routine named LNKFIL is ready in ROM #0. The flow diagram

- 107 -

RAM FILE HANDLING

........
of that routine is shown in the ·useful Routine For RAM file
handling in ROM #0·. You can get information to make your own
LNKFIL routine in it, too.

If you succeed to insert 6 AZ and to make up the
etarting address field in the directory, the opening a new 00
file ha~ been done successfully. You can save the data to the
new file with using MAKHOL and LNKFIL. Refer to another
section to know how to Append, Insert, and Delete data. The
sample program in the following section will show you how to
make a new file and save data.

Cf. How to make a new DO file

1. Find a free slot in the user's directory. If you
cannot find a free slot in the directory area, you
have to give up to make a new DO file. Or if you
find the same name in the directory, delete that
file or abandon to continue.

2. Register the file name and directory· flag at the
free slot.

3. Get the ASCTAB-1 and·save it in the address field
of the elot.

4. Try to make a one byte hole at the address where
ASCTAB pointed.

5. If you fail to make a hole, clear the directory
flag which you registered at (2).

6. If you succeed to make a hole, insert a AZ at that
point.

7. Make up the pointers and starting address in the
directory area.

8. Tha~'s all. The new 00 file has been created
without fail.

NOTE: If you make a hole by your own routine, please
make sure that the your own routine refines the
pointers. Refer to the explanation about the MAKHOL.
And refer to ·LNKFIL• to know how to make up the
address in Directory.

- 108. -

f RAM FILE HANDLING

..

8.2.3 How To Make A BA File

There is few difference between how to make DO file
and How to make BASIC file. There is no difference in the
registration of the file name and the directory flag. The
first· difference is that you have to end the BASIC file with
double NULLs (0) instead of AZ in DO files. In order to
understand what double NULLs means, you·have to familiar with
the function of the LINK POINTER in the Microsoft BASIC. The
inner specification of the Microsoft BASIC file 1s too
difficult to described here briefly. You can get some good
texts to learn the information about the BASIC programs and
their data constructions at the book store or the computer
shop. But the ba$ic concept about RAM file handling is
exactly same as DO file. (Register the file name and another
information at the directory and make a room for the program.)

created
In other

lowest 00

The second difference is the new BA file is
just above the BA files which has already stored.
words, the new BA file is inserted just below the
file. Refer to the section, •wHAT IS RAM FILE?•,

I believe that the person who wants to handle the BA
files, is an expert about the BASIC program and BASIC
interpreter. If you are a novice class programmer about the
BASIC interpreter, you had better not try to handle the BA
file yourself. Please use BASIC mode in ROM #0.

ex. How to create a new BA file in PC-8201A

1. Search a free slot in the user's directory area.
If you find a same name in the directory area,
delete the file or abandon to continue.

2. Set.up the directory flag and copy the file name··
into the directory,

3. Copy ASCTAB -1 into NULDIR, non-register program's
directory area. And make 2 bytes hole and store
the double NULL for non-register program.

4. Make a hole as large as possible at the ASCTAB-1.

5. The size of that hole is too small for the new BA
file, clear that directory flag written in (2).

- 109 -

RAM FILE HANDLING

6. If you succeed to make a big hole
file, copy the BASIC program into the
forget to insert the double NULLs at
the program •

for your BA
hole. Don't
the end of

. 7. Register the starting address at the starting
addres~ area in the directory area. Usually-, the
address that is one byte less than the starting
address of the non-registered program is used.

8. Squeeze the hole, when you made a too large hole.

9. Adjust the pointers, ASCTAB, SINTAB, VARTAB,
ARYTAB and STREND. Make up the starting address
of other files in the directory area. All DO
files' and CO files' starting address in the
directory field should be changed. Refer to
LNKFIL.

10. End

- 110 -

RAM FILE HANDLING

8.2.4 How To Make A CO File

The CO file is the another type of the file which you
want to make _yourself beside the DO file. ·The difference
between DO file and CO file is the heading instruction of the
file. · The CO file needs the heading data instead of the End
of File character, AZ. So you have to make sure that there
are more than 6 bytes besides the size of your machine
language program in the free area. And if there is no enough
free area, you cannot continue to make a new CO file. If you
have already set up the directory flag and file name, clear
them soon. Don't leave the illegal flag and file name in the
directory.

Heading of CO file

START ADDRESS

LENGTH

EXECUTION ADDRESS

2 bytes

2 bytes

2 bytes

So the file length of CO file can be calculated by
LENGTH + 6. In making CO file, don't forget to renew the
pointers, VARTAB ,ARYTAB and STREND.

The CO file is usually made just under the address
pointed by VARTAB. So the starting address of the other files
need not be changed after saving new CO file. But I recommend
to do LNKFIL after ~aving new CO file for safety.

ex. BSAVE •MAC.,50000,10,50000 in BASIC mode

Dump the data in CO file is;

AXC350

AX000A

AXC350

(50000) Starting address

(10) Length

(50000) Execution address

- 111 - -

RAM FILE HANDLING

Cf. The flow of making a new CO file

1. Search the free slot in the directory area. If
there is the same Tile name in the directory,
delete that file or abandon to continue.

2. Check the free area. Estimate the free size is
greater than your CO file's length+ 6 bytes.

3. If there is no room, stop.making a new CO file.

4. Make a hole just under address pointed by VARTAB
and store the data (or machine language program).
Make sure that all pointers are proper. In this
time, if you use MAKHOL to make a room, you have
to adjust the pointer, BINTAB. Because MAKHOL
changes BINTAB always.

S. Register the file name; directory flag and start
address at the directory.

6. Adjust VARTAB, ARYTAB and STRENO. Make up the
starting address of a 11 other files in the
directory for safety. If you use LNKFIL for-
adjustment of the a 11 start addresses in
directory, you have to care about the BINTAB as
you do in MAKHOL.

7 • . That ' s a 1 1 •

- 112 -

RAM FILE HANDLING

8.3 HOW TO DELETE A FILE

You can guess how to delete a file from the RAM file
•system in PC-8021 easily. The things that you have to do are
to clear the directory flag and to remove the data of the
file.

To delete a directory entry, you only turn off the
directory flag. If the. directory flag is less than AX80,
other programs regardes that slot is not used now.

And when you squeeze the body of the file, you have to
check the pointers and the start address of other files in the
directory. When you are using the subroutines in ROM #0,
these pointers are adjusted automatically. But if you do it
by your own routine, you have to care about the pointers. You
can find the good .clues in 'How to make new file", and
'MAKHOL' in 'Useful Routines for RAM file handling in ROM #0".

Whether you treat the pointers by your own routine or
utilize the MASOEL in ROM #0, you have to make up the starting
addresses of the another files. The LNKFIL will do it well.·
Refer to the following section to know the ENTRY information
about the LNKFIL. That section will give you a clue what
LNKFIL should do when you will make a LNKFIL by yourself.

8.3.1 How To Delete A 00 File

At the first, search the file name which you want to
delete in the file. If you don't remember the directory
construction, please refer to the chapter 'DIRECTORY
CONSTRUCTION", and make sure it. When you find the file name
in the directory, check the directory flag of the file. The
file which is opened in BASIC, cannot be deleted. If you do
it by force, the RAM file system might be crushed or the
system might be hung up.

Cf. The flow of d~leting a DO file (Calling Machine
language program by USR function in BASIC.)

1. Search the file name in the directory

- 113 -

RAM FILE HANDLING

2. Check the directory flag and if the file is opened
by BASIC, you cannot delete it.

3. Get the starting address of the file

4. Search AZ <End of File)

5. Count the size of the file

6. Remove the data of the file and shrink. The ROM
routine MASOEL will do it automatically. MASOEL
changes the pointers, BINTAB, VARTAB, ARYTAB and
STRENO automatically.

7. Refine the starting address of other
LNKFIL will help you.

files.

8. Clear the directory flag of the file which you
deleted.

9. That~s all

8.3.2 How To Delete A BA File

When you are not in BASIC program, there is few
differences between killing 00 file and killing BA file. The
differences are in searching the end of file. In 00 file, AZ
(26 in decimal) indicates the End of file. But in BA file,
there is no such a good terminater. The only one way to get
the end of the BA file is tracing the ·1ink pointer· from the
beginning of the BA file to end. If you can utilize the ROM
#0, you may use the useful routines, CHEAO. The CHEAO
searches the end of the BA file. And MASDEL removes the data
and refines the pointers. You have to care about the TXTTAB
position. If you delete a BA file which is located under the
file pointed by TXTTAB, you have to adjust the TXTTAB. This
case is occurred when TXTTAB points the second BA file and you
delete the first BA fil&. Finally, you have to do make up the
all starting address Clink pointers) in directory area.
LNKFIL will do it.

NOTE:
file

MASOEL does not change the ASCTAB. When a BA
is ·killed, ASCTAB should be changed. So after

- 114 -

RAM FILE HANDLING

calling MASOEL, you have to adjust the ASCTAB.
to the sample program in the following section.
·How to make a BA file· will give you a clue.

Refer
Also

Another difference is that there is a limitation in
deleting a BA file when you are executing that BASIC program.
The following caution is ~vailable when you make a machine
language subroutine for a program written in BASIC. If you
won't make a machine language subroutine which handles the
BASIC file, you may skip to read this caution.

NOTE: You cannot kill the BA file when you are in
it. In other words, when you are running a machine
language subroutine with a BASIC program, you may not
delete that BASIC program in the subroutine. I'm
afraid that this explanation will not make sense for
you. So I will show you the short sample.

In the BASIC mode, you can know ~here you are
in by •FILES• command. The file name with •*• is the
current file which you are treating. You don't kill
it.

1. Select BASIC mode in the menu

2. Type a BASIC program.
10 PRINT •HELLO• .

3. Save it.
SAVE .TEsr·

4. Load it again.
LOAD .TEsr·

5. Try to kill it
KILL •TEST.BA• (Return>
?FC Error
Ok

6. This result show you what I want to say. SASIC's
KILL command checks the current TXTTAB and avoid
to kill himself. Your machine language routine
should do same check before killing a BASIC file.

- 115 -

RAM FILE HANDLING

NOTE: The comparison between TXTTAB and the
starting address of the BA file is available only when
you are executing the BASIC program or executing the
machine language subroutjne in BASIC mode. It is
meaningless to care about- the TXTTAB and starting
address when you are not in BASIC mode,

Refer to ·what is RAM file· and ·aookkeeping area· to
understand the position of the BA files and TXTTAB.

Cf. The flow of the deleting the BA file

1. Search the file name in the directory

2. Check the directory flag and if the file is not SA
file, of course, you cannot delete it.

3. Get the starting address of the file in the
directory

4. Compare that starting address to TXTTAB. If they
are identical, you cannot delete it. If not, you
have to remember which is larger, the starting
address or TXTTAB.

5. Search End of the File
CHEAO will help you to find
Refer to ·useful Routines for
ROM #0•.

the end of file.
RAM file Handling in

6. Count the size of the file

7. Remove the data of the file and shrink.
The ROM routine MASDEL will do it automatically.
MASDEL changes the pointers, BINTAB, VARTAB,
ARYTAB and STRENO. Refer to •what is RAM file•
and ·eookkeeping area·. And MASDEL returns the
negative length in BC register~ You can use it to
adjust the ASCTAB.

8. Adjust ASCTAB

9. Refine the starting address of other files.
LNKFIL will help you. Refer to "Useful Routine
For RAM file handling in ROM #0".

~ 116 -

:Restore the result of the comparison between the
:starting address of the file and TXTTAB. If

· ;TXTTAB is greater than the starting addres, adjust
.: it.

. ..
Clear the directory flag of the file which you

!deleted.

: That' e a 11

To DELETE A CO File

· don't have to care about where you are in now like
file or killing DO file. You may delete any CO

nt to delete, even if you are executing that co
, CO f i 1 e· is 1 oaded at the specified area when the
6ked in menu mode or in BASIC mode. So the ·co·
delete the ·co· file itself, and can save the free

'!

- 117 -

RAM FILE HANDLING
..

ex. Delete a CO file it9elf

1. Load a CO file in BASIC or MENU.

----------------- AXFFFF

I
I

: machine prog I
I

:<-- BLOAO
or

Select
================= in
: CO2 file -----·------------

CO fi 1 e
BINTAB->:

00 file9

:-:
I
I

I
I
I
I

BA file9

AX8000 ---------~-----

Fig 8.1

- 118 -

,-
/

I .,

MENU

:hine prog

---------------- AXFFFF

=================

machine prog

=================
CO2 file

CO file

00 files

BA files

:000 -----------------

Fig 8.2

119

I
~ I

<-- PC

<- STRENO

<- "XAAAA

<- BINTAB

r
~··

RAM FILE HANDLING

3. Delete the CO·file and move the data between the STRENO and
"XAAAA.

----------------- AXFFFF

=================
I
I

I
I

: machine prog :<- PC

----------------------------------I
I

: CO2 file

00 files

BA files

AX8000 ----------~~--

Fig 8.3

NOTE: PC means Program Counter

- 120 -

I.
I

<- STRENO

<- BINTAB

RAM FILE HANDLING

Unfortunately, you cannot use MASOEL simply for
shrinking the hole which is made by killing the CO file, like
in deleting a BA file and a 00 file. Because MASOEL changes
the pointer, BINTAB. (You can understand why BINTAB should
not be changed by reviewing the sec~ion, 'What is RAM files'
and 1 Bookkeeping area'.) So if you want to use MASDEL, I do
recommend that, you have to save the BINTAB before calling
MASOEL and restore it after calling MASOEL.

Cf. The flow of deleting CO file.

1. Search a file name which you want to delete

2. Save the starting address in the airectory

3. Calculate the size of that file. The 2nd and 3rd
byte in that file show the data length. So the
total size of the file is made by adding 6 bytes
to the data length. (The 6 bytes includes the
starting address, data length and the execution
address. Refer to 1 What is the RAM file.·)

4. Set the starting address and the length for MASOEL

s. Save BINTAB

6. Call MASDEL

7. Recover BINTAB

8. Clear the directory flag of the file

9. That's all

- 121 -

RAM FILE HANDLING

8.4 HOW TO APPEND DATA TO 00 FILE"

The way to append data to the 00 file is very easy.
At the first, get the starting aadress of the 00 file in the
directory and search the end of file, AZ. Then, make a room
for data you want to store at that point. The routine,
MAKHOL, is a best routine to-make a room. Refer to ·useful
Routine For RAM file handling in ROM #0•. And don't forget to
refine the starting address of other files in the directory
area. LNKFIL will help you. Refer to previous chapter, ·How
to make a DO file· also.

Cf. APPEND data to the 00 file

1. Search the file name in the directory

2. Make sure the file type and status by checking the
directory flag.

3~ Get the starting address in the directory

4. Search the end of file, AZ (26 in Decimal)

5. Make a hole_just before the AZ.
I recommend to use MAKHOL.

6. Store data in the hole

7. Shrink the hole, when the hole you made 1s too
large for the data ·

MASOEL in ROM #0 is useful.

8. Refine the starting address in the Directory area.
LNKFIL will help you.

9. End

There is a sample program of how to APPEND data to 00
file in the foll~wing section.

- 122 -

RAM FILE HANDLING

8.5 HOW TO INSERT DATA TO DO FIL~

When you want to insert some data to the DO file, you
can use the know-how which you Wse to APPEND data to the DO
file. The difference is that you have to search the address
where you want to insert the data instead of searching the end
of file.

Cf. Insert data to DO file

1. Search the file name in the directory

2. Make sure the file type and status by checking the
directory flag

3. Get the starting address in the directory

4. Get the address where you want to insert the data

5. Make a hole for the data at the point

Usually, MAKHOL in ROM #0 is used. MAKHOL changes
the pointers, BINTAB, VARTAB, ARYTAB and STREND.

6. Copy data in the hole

7. Shrink the hole, when the hole is too large for
the data

MASOEL in ROM #0 is useful. MASOEL adjusts
the pointers, BINTAB, VARTAB, ARYTAB and STRENO.

8. Adjust the starting address in the RAM.

LNKFIL in ROM #0 is useful. Refer to "Useful
Routines for RAM file Handling in ROM #0".

9. End

- 123 -

...
RAM FILE HANDLING

8.6 HOU TO DELETE DATA FROM DO FILE

To DELETE data from the 00 file is easier than to
INSERT data to the 00 file. If you will use the ROM #0, the
routine named MASDEL delete the da~a. The MASOEL refines the
pointers and LNKFIL adjusts the starting addresses of other
file's. You can find the detail information about MASDEL and
LNKFIL in ·useful Routine for RAM file in ROM #0. If you
cannot use the ROM #0, you have to renew the pointers, BINTAB,
VARTAB, ARYTAB and STRENO by YOURSELF. And you must modify
the starting addresses in the directory YOURSELF. Refer to
the chapter ·oirectory construction· and "Bookkeeping• to
under stand the directory structure and pointers. "MAKHOL"
and "LNKFIL• in ·useful Routine for RAM file handling in ROM
#&" show you how to do it •

•

- 124 -

l

RAM FILE HANDLING

8.7 USEFUL ROUTINES FOR RAM FILE HANDLING IN ROM #0

There are several useful routines in ROM #0 for RAM
file handling. ·Indeed that you have to do 'bank-switching' to
use these RAM file handling routines from ROM #1. (Refer to
Chapter 3.3) But you don't have to worry about the pointers,
if you use them. And also, you can save the time to make your
own subroutines. I do recommend you to use these RAM file
handling routines in ROM #0 for saving time and making
applications smoothly.

The presented useful routine in ROM #0.

MAKHOL: Make a room for data entry with changing the pointers

LNKFIL: Make sure the start addre~s in the directory area

MASDEL: Shrink the room made by MAKHOL. This file help you
when you made a too large hole.

CHEAO: Search the end of file in BA file.

- 125 -

RAM FILE HANDLING

8.7.1 MAKHOL

Make a hole

ADDRESS AX6C0A C AO66012, 27658 >

ENTRY CHLJ points where you want to make a hole

CBCJ size of the hole

EXIT CHLJ and CBCJ are preserved
Carry is set if out of memory

In order to know the free area's size, STRENO
is the best pointer. The amount of the STRENO and
your file's size, in this case, should be less than
CSPJ 120. (The ·sp• means Stack Pointer, as you
know.) The 120 bytes are reserved for Stack's
operation. If there is a enough room, MAKHOL shifts
the all data between the specified address and STRENO.
If not,· MAKHOL returns with carry set. The flow of
MAKHOL is listed at next page.

- 126 -

RAM FILE HANDLING

ex. The flow of MAKHOL. tHow to make a room safely.)

/------------¥
MAKHOL

¥------------/
; STRENO + Required bytes

< SP - Stack area (120 bytes) :

I
I No
: -----.----> Out of Memory

: Move the data between STRENO and
specified address

------------------------------------- **
Change the pointers

ASCTAB, BINTAB, VARTAB, ARYTAB
and STREND

-----------------~-------------------
-/-----------¥

RETURN
¥-----------/
Fig 8.4

It is unnecessary to care about the pointers
unless you make your own MAKHOL routine. The MAKHOL
in ROM #0 manages the pointers automatically. But it
does not change the starting address in the directory
field. Refer to LNKFIL.

·**When you make a hole just above the ASCTAB to
create a new DO file, you have to change the
pointers, BINTAB, VARTAB and ARYTAB. The ASCTAB
is modified only when you make a hole under ASCTAB
to register a new BA file.

- 127 -

RAM FILE HANDLING

It is ~asy to guess that calling MAKHOL too many times
will reduce the processing speed. So you had better call the
MAKHOL with a good large number in BC register. It makes a
good hole which is large enough to save the data you want to
keep. The only one thing you have to care of is that you have
to shrink the hole when you made a too big hole. The 00 file
cannot include NUL (0) and AZ (26) in the file. (The AZ means
the End of File, as you know.) There is a convenient routine
to shrink the hole and it refines the pointers, also. Its
name is MASOEL and you can get the information about it in the
following section.

- 128 -

RAM FILE HANDLING

8.7.2 LNKFIL

Fix up directory structure

ADDRESS AX233A < A021472, 9018 >

ENTRY: NONE

EXIT : NONE
All registers might be altered

This routine fixes up all possible incomplete "links"
between files and their directories. There are many chances
in that the link pointers (same as starting address>. in the
directory fields are not maintained properly. For instance,
Making a new DO file will change the starting address of other
00 files and CO file. I agree that these link pointers should
be modified every time when the RAM organization is modified.
But it is also true that such a operation will make a big
overhead in RAM file handling. Since you had better make sure
when LNKFIL should be called. For instance, when a file is
deleted during further file I/0, all link pointers should be
fixed up.

- 129 -

RAM FILE HANDLING

Internal flow of LNKFIL

/---------------¥
LNKFIL

¥---------------/
Mark the all valid directory:

: flag (turn 0 bit of all
: valid directory flag)

: Get the lowest file address:
~-----------------------------

Get the lowest link pointer
in the valid file's
directory

: Save this link pointer r

:<------------------------------·
Search the lowest link pointer:

: in the marked files in
: directory area

---------------------------Save the saved link pointer
at this marked files link
pointer field ·

---------------~-----------------I :
I

Demark the directory flag of
: that file. (turn off the bit 0:
: of that file)

(A)

- 130

(8)

RAM FILE HANDLING

CA)

l Get next lowest file address l
l from the bottom of RAM l ·

l All marked directory flag
l has demaked?
--------------------------------Not End of directory

l End of directory

/---------------¥
ENO

¥---------~----/
Fig 8.5

(8)

When the top address of ~he next file is searched, the
pointers, ASCTAB and BINTAB are useful to know what kind of
file is searched now.

- 131 -

RAM FILE HANDLING

8.7.3 MASOEL

Delete CBCJ bytes from CHLJ .
ADDRESS: AX6C3C C A066074, 27708)

ENTRY: CHLJ pointer of the hole should be squeezed
CBCJ size of the hole

EXIT: CHLJ preserved
CBCJ negated

This routine do exactly reverse operation of
MAKHOL. The data above the CHLJ+CBCJ is moved up.
And the pointers, BINTAB, VARTAB~ ARYTAS are modified.
If you use this routine for shrinking a hole of BA
file, you can adjust the ASCTAB with the negated CBCJ _
after exit this routine. And also you can adjust the
TXTTAB by using this negated BC register if necessary.
You have to adjust the TXTTAB when you remove a BA
file which is located under the address where 1s
pointed by TXTTAB.

If you want utilize this routine for CO file,
you need save BINTAB and recover it after exit. The
BINTAB is not modified by killing CO file.

- 132 -

RAM FILE HANDLING ,

...
8.7.4 CHEAD

Search for the end of this BASIC program

ADDRESS AX718 C 34300, 1816)

ENTRY·: CHLJ Top address of that BASIC file

EXIT: CHLJ The last address of that BASIC file
All registers and flags are modified possibly

The main purpose of CHEAD is fix links of the
BASIC program. In other words, CHEAD goes through
program storage and fixes up all the links. The end
of each line is found by searching for the zero at the
end. The double zero link is used to detect the end
of the program. So EXIT CHLJ and one will show you
the top address of the next file.

- 133 -

RAM FILE HANDLING

--~
8.8 SAMPLE PROGRAM

The sample ,programs listed here are the exactly
·sAMPLE·. So some processes are omitted to make explanation
clearly. For instance, searching directory to find the good
slot for file handling is not described except ·How to make a
DO file·. You know that you have to survey the all directory
for checking the same file name and free slot, when you make a
new file.

And also, these programs, stored this section are
written in plane program technic. You will find another good
algorism to handle the RAM files safely and quickly.

- 134 -

RAM FILE HANDLING

8.8.1 Make A New 00 File (ASCii File)

; Register new DO file in the Directory area
; OPEN DO file
;
USRDIR

EOTDIR
OIRLEN
file
NAMLEN
ASCTAB

LNKFIL

MAKHOL
EOFFIL

OPENDO:

• ,

XRA
MOV
MOV
SHLO

LXI

SEANAM:

• ,

LXI
DAO
MOV
CPI
JC
INR
JZ

EQU

EQU
EQU

EQU
EQU

EQU

EQU
EQU

A
H,A
L,A
SLTAOR

AXF891 ;Top address of user's
;directory
USROIR - Directory length
11 ;Length of the directory per

6 ;Length of the file name
AXFAE1 ;Points the lowest address of
;DO files
AX233A ;Make up the address 1n
;Directory
AX6C0A ;Make a room for file
A1AH ;End of 00 file

;Clear HL
• ,
• . ,
;Clear slot address

H,EOTOIR ;Set Ctop of user directory]
; - Directory length

B,OIRLEN;Set Directory length
8 ;Get next slot
A,M ;Get directory flag
AX80 ; Va 1 id?
NONVAL ;Jump if not valid slot
A ;End of directory area?
ENOSEA ;Jump if end of test

; Is the file DO file?

OCR A ;Adjust directory flag
MOV D,A ;copy flag for later use
AN! AB01000000

;Pick up ASCII flag
ORA A ;DO file?
JZ SEANAM ;Jump if not DO file

• ,
• Compare the name ,
• ,

PUSH H ;Save the slot address
INX H
INX H ;Advance to name field in

- 135 -

RAM FILE HANDLING

XCHG
LXI

MVI

; directory
;COEJ name address

H,NAME ;name of the file which
; we want to make

B,NAMLEN;Set name ~ength
CMPNAM:

• ,

LOAX
CPI
JNZ
INX
INX
OCR
JNZ

0
M
NOTSAM
H
0
B
CMPNAM

;Get directory's name
;Compare with our file
;Jump if not same
;Advance the pointers

;compare next

; Same file name is found
• ,

• ,

POP H ;Top of the slot address
MOV A,M ;Get directory flag
ANI AB00000010

;Pick up OPEN BIT
ORA A ;File already opened?
JNZ FILAOP ;Jump if file already opened

; Find same name and not opened file
• ,

• ,

SHLO
-CALL

· JMP

SLTAOR
OELFIL
FINONM

; Find free slot
• ,

• ,

XCHG
LHLO

MOV
ORA
JNZ
XCHG
SHLO
JMP

EVERFN:
XCHG
JMP

SLTAOR

A,H
L
EVERFN

SLTAOR
SEANAM

SEANAM

;Save it
;Delete this file
;go to Registration

;COEJ free slot address
;Get free slo.t address
; that has been found
• ,
;Never found?
;jump if already found
;This is the fir-st time

;Check next slot

;Don't renew the address
• ,

; To search the directory is done
• ,

LHLO
MOV
ORA

SLTAOR
A,H
L

;Is there good free slot?

• ,

- 136 -

RAM FILE HANDLING.

4

JZ OIRFULL ;Jump if directory full
;

PUSH
MVI

INX
INX
LXI
MVI

CPYNAM:

• ,

• ,

LDAX
MOV
INX
INX
OCR
JNZ

LHLD

LXI
CALL
JC
MVI
DCX

POP
INX
MOV
STAX
INX
MOV
STAX

H ;Save the top of the slot
M,"'811000000

H
H

;Set directory flag as 00
; fi l·e
;Advance to name field

O,NAME ;Top of our file
B,NAMLEN;Name length

name

0
M,A
H
D
B
CPYNAM

;get our file name
;copy it in directory
• ,

;Continue to end of name

ASCTAB ;Get lowest address for 00
; files

8,1 ;Make one byte hole
MAKHOL ;Dig
MEMFUL ;Jump if out of memory
M,EOFFIL;Set end of file marker
H ;Lowest address - 1

D
D
A,L
D
0
A,H
0

; for maintain the file order
;Recover Top of that slot
;Advance to address field
;set start address

; Make up starting address of other files in
• ,
;

;

directory area

CALL LNKFIL

RET

; External routines
•
' DELFIL:

; Delete the specified file

FILAOP:
; Error handling --- File already opened

MEMFUL:

- 137 -

RAM FILE HANDLING

; Error handling Memory ful 1

DIRFUL:
; Error handling --- Directory full

• ,
; DATA AREA
•
' NAME: DB

ENO

'TEST DO'

- 138 -

. .

RAM FILE HANDLING

8.8.2

•
'

Save Data Into DO Fi 1 e .. --

; Save data into DO file
•
' ; ENTRY: CHLJ points directory of the file
• ,
•
' •
'

CDEJ address of source data
CBCJ length of data

MAKHOL EQU AX6C0A ;Make a room for data
AX233A ;Make up starting address LNKFIL EQU

ENDFIL EQU AX1A ;End of DO file

• t
•
' SAVDAT:

• ' .
; Check the directory flag of the file
• t

•
'

MOV A,M ;Get directory flag
PUSH B ;Save data length
MOV B,A ;Save directory flag
ANI Ae11000000·

;Pick up mode bits
CPI AB11000000

;DO file?
JNZ BADFIL ;Jump if not DO file
MOV A,B ;Get flag again
ANI AB00000010

·;Pickup OPEN bit
ORA A ;File already opened?
JNZ FILAOP ;Jump if file already opened
MOV A,B ;Get directory flag
ORI 000000108

;Say this file is opened
MOV M,A

;Search end of file
•
' POP

PUSH
PUSH
INX
MOV
INX

B
H
B
H
A,M
H

;Recover DATA length
;Save Top of directory address
;Save DATA length
;Advance to Address field
;get address in CHLJ

- 139 -

RAM FILE HANDLING

MOV H,M
MOV L,A ;Set top of the file

• ,
SEALOP:

;Get Data MOV A,M
CPI ENDFIL ;End of file?
JZ FNDEOF ;Jump if end of file
INX H
JMP SEALOP ;Search next

• ,
;MAKE A ROOM FOR DATA
• ,

• ,

POP
PUSH
CALL
JC
POP

B
D
MAKHOL
MEMFUL
D

;Recover data lengtH
;Save source address
;Dig a hole for data
;jump if error detected
;Recover source address

;copy data in to the hole
• ,
COPYLP:

• ,

LDAX
MOV
INX
INX
DCX
MOV
ORA
JNZ

D
M,A
H
D
B
A,B
C
COPYLP

;Get source data
;save it in~o file

;Decrement DATA length
• ,
;End of data?
;Continue till end of data

;Make up starting address of other files in
; directory area
• ,

• ,
CALL LNKFIL

;Turn off the opened bit in directory flag
• ,

• ,

POP H ;Recover directory address
MOV A,M ;Get directory flag
ANI ~B11111101

;Turn off the flag
MOV M,A ;Renew the flag
RET

;External routines
• ,
BADFIL:

; Bad file mode

- 140 -

I

RAM FILE HANDLING

FILAOP:
; File already o~ened

MEMFUL:
; Memory full error ..

ENO

- 141 -

..

,
..

RAM FILE HANDLING

8.8.3 DELETE SOME DATA FRoM·oo FILt

..
Delete some data from DO file

.

ENTRY: CHLJ Top of the direetory address
CDEJ Offset address of Top data

should be deleted
; CBCJ Length of data should be deleted
• ,
MASOEL EQU
LNKFIL EQU

AX6C3C ;Remove some data
AX233A ;Make up starting address

• ,

OELDAT:

• ,
;Check directory flag
• '

• ,

;

MOV A,M ;Get direetory flag of
; the file

ANI AB11000000
;Pick up VALID bit and ASCII
; bit

CPI AB11000000
;Valid 00 file?

JNZ BADFIL ;Jump if bad file
MOV A,M ;Get direetory flag again
ANI A800000010

;Pick up OPEN bit
ORA A ;Already opened?
JNZ FILAOP ;jump if the file already opened
MOV A,M ;Set opened bit
ORI AB00000010
MOV M,A ;Say, the file is opened

PUSH
INX
MOV
INX
MOV
MOV

DAD

H
H
A,M
H
H,M
L,A

D

;Save directory address
;Get start address of the file
• '
• ,
;CHLJ start address of the file

;Absolute address of the data
; ~hich should be removed

; Delete data
• ,
• ,

CHLJ TOP of the data, CBCJ data length

- 142 -

RAM FILE HANDLING

• ,
CALL MASOEL ;Remove the data from file

; Turn off the OPENED bit
• ,

• ,
;Adjust

• ,

• ,

POP H ;Restore .the directory address
MOV A,M ;Get d1rectory flag
ANI AB11111101

MOV

the

CALL

RET

M,A

directory

LNKFIL

;Turn off

;Make up all 9tart address in the
; directory flag

; External routine
• ,
BADFIL:

FILAOP:

;Bad file mode -- Error

;File already opened -- Error

- 143 -

RAM FILE HANDLING

8.8.4 DELETE 00 FILE

• • ; Delete 00 file
• ,
; ENTRY.: CHLJ points the directory of the file
• ,
MASOEL EQU
LNKFIL EQU

DELOO:
MOV
ANI

CPI

JNZ
MOV
ANI

AX6C3C ;remove data
AX233A ;adjust address field in

; directory area

A,M ;Get directory flag
AB11000000

;Pick up VALID and ASCII bit
"811000000

;Valid do file
BADFIL ;jump if bad file mode
A,M ;get directory flag
AB00000010

;pick up opened bit
ORA A ;Already opened?

• ,

JNZ FILAOP ;jump if already opened

; Calculate the size of the file
• •

;

SEALOP:

• ,

PUSH
INX
MOV
INX
MOV
MOV

PUSH

MOV
CPI
INX
JNZ

POP
MOV
SUB
MOV
MOV
S88
MOV

H
H
A,M
H
H,M
L,A

H

A,M
EOFFIL
H
SEALOP

0
A,L
E:
C,A
A,H
0
8,A

;save directory address
;get start address
• ,

;CHLJ start address

;Save start address

;end of file?
• ,
;next field
;continue till EOF

;Restore start address
;CHLJ-CDEJ= length

• ,

;Set length in CBCJ

- 144 -

tlAN~LING

• ,

• ,

• ,
;Make
• ,

• ,

•
'

XCHG

CALL

POP
XRA
MOV

up all

CALL

RET

;CHLJ star·t" address

MASOEL ;Remove the data

H ;recove_r directory
A
M,A ;clear it

start address in directory

LNKFIL

;External routine
•
' FILAOP:

BAOFIL:

• ,

;File already opened error

;Bad file mode error

ENO

- 145 -

address

RAM FILE HANDLING

8.8.S DELETE SA FILE --·-s -•

•
' ;Delete BASIC file

- . . -l •
' ; Asswme that this subroutine i!s used with BASIC

I •
' • ,

main program

; ENTRY: CHLJ directory address of the file
• ,

MASOEL
LNKFIL

CHEAO

TXTTAB

A$CTAB

• ,
• ,
OELBAS:

EQU
EQU

EQU

EQU

EQU

MOV
c·p1

JNZ

XCHG
LHLO

XCHG

PUSH
INX
MOV

INX
MOV
MOV
MOV
SUB
JNZ
MOV
SUB
JNZ

"'X6C3C
"'X233A

; remove data from file
; make up starting address

"X0718; search end of BASIC file

"'XF45O ; lowest address of current
; BASIC program

"XFAE1 ·; Lowest address of 00 files

A,M ;Get directory flag
"B10000000

;BASIC file?
BAOFIL ;Jump if not BASIC

; file
;COEJ directory address

TXTTAB ;get lowest address of the
;current BASIC program
; (Ue are executing the
; BASIC program with this
; machine subroutine.)
;COEJ TXTTAB CHLJ Directory
; address

H ;save directory address
H ;advance to address field
A,M ;get start address of BA file

; which we want to delete
H
H,M
L,A
A,H
D
NOSAM
A,L
E
NOSAM

;CHLJ start address
;compare to TXTTAB

;jump if not same
;compare lower address
• ,
;jump if not same

146 -

RAM FILE HANDLING

NOSAM:

• ,

JMP

XCHG
POP
PUSH
XRA
MOV
PUSH

FCERR

H
PSIJ
A
M,A
D

;you cannot kill Y.Our mother
;BASIC

;save start address
;recover directory address
;save result of comparison
;CAJ=0
;clear directory flag
;save start address

;COEJ start address of the BA file
•
' CALL

INX
POP
PUSH
MOV
SUB
MOV

·· MOV

•
' ;Remove
•
'
•
'

•
'
•
'

SBB
POP

body

CALL

LHLD

DAD
SHLO

PUSH

of

CHEAO
H
0
0
A,L
E
C,A
A,H
D
H

the file

;search the end of BA file
;adjust for calculation the length
;recover start address
;Save start address· again
;Calculate the length
•
' ;Set length in CBCJ

; recov·er start address

MASOEL ;return negative length in CBCJ

ASCTAB ;adjust ASCTAB because MASOEL
;doesn't change it

B
ASCTAB

B ;save this value for later use

;Adjust starting address in directory
•
'
•
'

•
'

CALL

POP
POP

RNC

LHLO

DAO
SHLD
RET

LNKFIL

B
PSIJ

TXTTAB

B
TXTTAB

•
'

;Restore adjustment value
;recall result of comparison
; TXTTAB and start address
;Return if TXTTAB is smaller
; than start address
;Adjust TXTTAB because we
; delete BA file under TXTTAB

- 147 -

RAM FILE HANDLING

; EXTERNAL ROUTINE
•
' FCERR:

BAOFIL:

; Illegal function call error
••

; Bad file mode error

ENO

- 148 -

RAM FILE HANDLING

8.8.6 MAKE NEW CO FILE

. -
; MAKE NEW CO FILE
• ,
; ENTRY: CSTRADRJ start address of CO file data
•
' • • • • •
' •
' MAKHOL
LNKFIL

HEADLN

BINTAB

VARTAS

MAKECO:
• ,

CLENGTHJ length of data
CEXECADJ execution address

CHLJ directory address for this CO file

EQU "'X6C0A ;make a room·
EQU "'X233A ;make up directory address field

EQU 6 ;Header length of CO file

EQU "'XFAE3 ; 1 owest address of existed co
• files ' EQU "'XFAES ; 1 owest address of Variable
• table '

; Refer HOU TO MAKE NEU DO FILE to know how to find
; the directory address for new files •
•

- '
MVI

MOV
PUSH
LHLD
LXI
DAO
MOV
MOV
LHLD

PUSH
LHLD
CALL
JC
XCHG
POP
SHLD
XCHG

A,""B10100000
;Set direc~ory flag as CO file

M,A ;register it
H ;save directory address
LENGTH ;get file l~ngth of new CO
B,HEAOLN;Set header length
B ;Get total length of new CO file
B,H ;Set length in CBCJ
C,L ;
BINTAB· ;CHLJ lowest address of existed

H
VARTAB
MAKHOL
MEMFUL

;CO files
;Save current BINTAB
;CHLJ just above highest CO file
;Try to make a hole
;jump if there is no enough room
;Save the top address of hole

H ;recover BINTAB
BINTAB ;Adjust BINTAB

;restore TOP of hole

- 149 -

RAM FILE HANDLING

• ,

POP
INX
MOV
STAX
INX
MOV
STAX

D
0
A,L
0
D
A,H
D

.. -·
;CDEJ directory address
;advance to address field
;Set start address

• ,
.. -..

; To register the file name in directory is omitted •
• ,

COPYHD:

• ,

COPYLP:

• ,

•
' •
' •
'

ERROR

MEMFUL:
•
'
• ,
• DATA ,
• ,
STARAO:
LENGTH:

XCHG ;COEJ top of the vacant room
MVI B,HEAOLN;Set header length
LXI H,STARAO;offset of header data

MOV
STAX
INX
INX
OCR
JNZ

A,M
0
0
H
B
COPYHD

;Get header data
;store'it in file

;end of header data?
:copy 3 address as header

LHLD LENGTH ;Get data length
MOV B,H , ;set length in• CBCJ
MOV C,!:ir-
LHLD STARAD ;CDEJ destination address

;CHLJ source address

MOV A,M ;copy contents of file
STAX 0
INX 0
INX H
DCX B ;count down
MOV A,B ;end of data?
ORA C
JNZ COPYLP ;continue till end of data

CALL LNKFIL ;make up all start address of
;other files in directory area

RET

HANDLING ROUTINE

memory ful 1 er-r-or-

AREA

OS 2
OS 2

- 150 -

RAM FILE HANDLING

-~
EXECAO: OS 2

ENO

- 151 -

RAM FILE HANDLING

.~

8.8.7 DELETE A CO FILE

•
' ; DELETE A CO FILE
;
; ENTRY: CHLJ addres of its directory
•
' MASDEL
LNKFIL

BINTAB
HEADLN

DELCO:

EQU
EQU

EQU
EQU

MOV
CPI

JNZ
XRA
MOV
INX
MOV

INX
MOV
MOV
PUSH
INX

INX
MOV
INX
MOV
LXI
DAO
MOV
MOV
POP
XCHG
LHLO

PUSH
XCHG

CALL
POP
SHLD

AX6C3C ;remove data
AX233A ;make up starting address

;in the directory

"XFAE3 ; 1 owest address of CO files
6 ; 1 ength of the header in CO

• file '

A,M ;Get DIRECTORY flag
"'810100000

BAOFIL
A
M,A
H
A,M

H
H,M
L,A
H
H

H
C,M
H
B,M

;CO file?
;Jump if BAO file mode
•
' ;Clear directory flag
;Advance to address field
;Get start address of the CO
;file

;CHLJ start address

;s~ve start address
;Get file length in the
; header

;get length in CBCJ
•
'

H,HEADLN;add header length
B ;
B,H ;Set total length in CBCJ
C,L
H

BINTAB

H

MAS.DEL
H
BINTAB

;recover start address
;save it at once
;get lowest address of existed
;CO files
;save it for after adjustment
;CHLJ start address
;CBCJ file length
;remove the body of the file
;recover BINTAB
;adjust BINTAB

- 152 -

RAM FILE HANDLING

•
'

;, - .. ·1

CALL LNKFIL ;make up starting address in
;the directory area

RET

; EXTERNAL ERROR ROUTINE
• ,
BADFIL:

;Bad file mode

END

- 153 -

r
!

CHAPTER 9

LCD INTERFACE

This chapter describes how to control LCD (Liquid
Crystal Display) of PC-8201A.

9.1 OVER VIEU

The LCD (LR-202C>, full bit map screen which consists
of 240 * 64 dots, displays 40 characters per line and 8
lines per screen. A character on the LCD consists of 6 by 8
pixels. The.LCD is driven by 10 Segment Drivers (HD441026)
with 200 bytes Display RAM and 2 Common Drivers (HD44023b).
Segment Drivers are selected by Port A/8 of PPI (81C55).

9.2 CONSTRUCTION OF LCD

. The LCD is divided into the following IC blocks. Each
block has i.ts own Segment Driver with 200 bytes Display RAM.
And each IC block can display 50 * 32 dots. However, BS and
B10 displays only 40 * 32 dots. Of course, you can write
dots on the remaining area of Display RAM of B5 and 810 with
no error, but they will never appear on the screen.

- 154 -

LCD INTERFACE •

. ·•

:<------- 240 dots-------------------->:
-----+-------~-------------------------------+

I
I

81 : B2 B3 84 .. BS

64 dots+---------------------------------------+
I
I

B6: B7 BS 89 810

-----+---------------------------------------+
Fig 9.1

The Display RAM may be regarded as the VRAM 1n the
traditional desk top type personal computer. Setting a Bit
On/Off in the Display RAM means setting/resetting a dot on
the LCD.

Refer to following sections how to control ·each
Segment Driver.

- 155 -

r~
~ LCO INTERFACE

. 9.3 I/0 PORT RELATED TO LCD ..

9.3.1 BLOCK SELECT PPI 81CSS PORT A/8 . ··-

msb 7 6 5 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
lPA7lPA6lPASlPA4lPA3lPA2lPA1lPA1:
+-------------------------------+ : X l X l X l X: X l X lP81lPB0l
+------------------------------+

OUT ""X89

OUT ""XBA

PA0 to P87 is associated to 8LOCK1 to BLOCKS
P80,PB1 to BLOCK9,10 respectively.

0 = Not Select/ 1 = Select

Oescr-iption:

Selecting a LCD Block C same meaning as selecting a
Segment Driver IC) .which. you want to access. You
cannot select two blocks at a time.

- 156 -

LCD INTERFACE

9.3.2 LCD COMMAND SET

There are 5 commands to control the Segment Driver IC.
These commands are executed via Port ~XFE.

9.3.2.1 Display ON/OFF.

msb 7 6 5 4 3 2 1 0 lsb

/

+---+---+---+---+---+---+---+------+
: 0 : 0 : 1 : 1 : 1 : 0 : 0 : DISP :
+---+---+---+---+---+---+---+------+

DISP: Display ON/OFF

Description:

0 = Dieplay Off
1 = Display On

OUT "'XFE

DISP decides ~hether the data in Display RAM
is displayed on the screen.
This port doesn't effect the contents of Display RAM.

- 157 -

•

LCO INTERFACE
-

9.3.2.2 Set Address Counter

msb 7 6 5 4 3 2 ·f · 0 lsb
+---+---+---+---+---+---+---+---+
lPG1lPG0lOFS:OF4lOF3:0F2:oF1:oF0:
+---+---+---+---+---+---+---+---+

Select PAGE

PGl
0
0
1
1

PG0
1
1
0
1

PAGE0
PAGE1
PAGE2
PAGE3

OFn means 'OFfset counter' in each PAGE.
It must be from 0 to 49.

The Display RAM is divided into 4(0 to 3) pages and
each page contains 50 bytes (0 to 49) as shown at next page.
Segment driver has PAGE counter and OFFSET Counter. These
counter is set by this command. The OFFSET counter works as
the loop counter, it's value· from 0 to 49. The OFFSET counter
is automatically Incremented/Decremented after read/write
operation. The counter mode is described blow. Page counter
is not changed by read/write operation.

- 158 -

LCD INTERFACE

PAGE
counter-

"800

"B01

"'B10

"'B11

,I

OFFSET counter- .
0<------------------->49(39 if BS/810>

+---+-------------------+
: 1 sb:
I I
I I

:msbl
PAGE 0

I
I

+---+---~---------------+
l lsb
I
I

lmsb
PAGE 1

I
I

+-----------------------+
: 1 sb
I
I

:msb
PAGE 2

+-----------------------+
:meb

PAGE 3
: 1 sb
+-----------------------+
Fig 9.2

- 159 -

/

r
,, LCD INTERFACE

9.3.2.3 Set Starting Page.

msb 7 6 5 4 3 2 . 1 0 lsb -- ~ +----+---+---+---+---+---+---+---+
lSPG1lSPG2l 1 : 1 : 1 : 1 l 1 : 1 :

·+----+----+---+---+---+---+---+---+

SPG1/0: Specify the Starting Page to be
display on LCD.

OUT "XFE

SPG1
0

SPG0
0

Order of Display Page
0 -> 1 -> 2 -> 3

0 1 1 -> 2 -> 3 -> 0
1 0 2 -> 3 -> 0 -> 1
1 1 3 -> 0 -> 1 -> 2

Description:

Assume that each LCD block is divided into 4 pages
corresponding with the Display RAM. The combination
with the Page of LCD Block and Display RAM page can
changed. The •sET STARTING PAGE. defines the mapping
bet~een the Page in Display RAM and the Page of LCD
Block.

Ex.

Assume that Starting page is ~et to 2. Then mapping
bet~een Display RAM and LCD PAGE becomes as shown as
follows.

- 160 -

LCD INTERFACE

-LCD BLOCK

Upper

Lower

+-----------------------+
.,

PAGE2 in Display RAM
is displayed here

+-----------------------+
PAGE3 in Display RAM
is displayed here

+-----------------------+
PAGE0 in Display RAM
is displayed here

+-----------------------+ ..
I

I
I

PAGE1 in Display RAM
i9 displayed here

+-----------------------+
Fig 9.3

- 161 -

LCD INTERFACE

....
9.3.2.4 Select Addre9s Counter Mode

m9b 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
: 0 : 0 : 1 : 1 : 0 : 0 : 1 :u10: ouT AXFE
+---+---+---+---+---+---+---+---+

U/O(Up/Oown count) --- 0 Up Count
1 Down count

Description:

Set OFFSET Counter Mode.

-· 162 -

LCD INTERFACE
.,

9.3.3 Read Status Read The Status Of Segment Driver.

msb 7 6 5 4 -·~ 3 - 0 1 sb
+----+-------+------+-----+-----+
lBUSYlUP/DOWNlON/OFFlRESETlXXXX: IN AXFE
+----+-------+------+-----+-----+
RESET ----- Sta~us of the RST pin

0 Normal
1 RST is low 1 evel

(BUSY must be 1)

ON/OFF ----- Display ON/OFF
0 Display OFF
1 Display ON

UP/DOWN ----- Mode of Address counter
0 Down counter
1 Up counter

BUSY -----
0 Normal
1 Operating Command or

Writing/Reading a data.

- 163 -

••

LCD INTERFACE ··•
.,.

9.3.4 ~rite/Read Display Data

.. . --·~
+--+--+--+-~+--+--+--+--+
:O7lO6lDSlD4lO3:D2lD1:O0:

·+--+--+--+--+--+--+--+--+

Description:

. ~-
IN/OUT "'XFF

Read the data from the Display RAM that is pointed by
PAGE and OFFSET counter. If you want read some portion
of the Display RAM, use this command after Setting t~e
PAGE counter and OFFSET counter by ·set Address
Counter· command and ·set Page Counter' command
described before. Note that one dummy read must be
done before using this command in order to get a
correct data.

- 164 -

LCD INTERFACE . .
9.4 SOFTWARE FOR LCD

; This section describes not ohly how to handle the LCD
without reading the routines stored in ROM #0 about LCD, but
also how to maintain the book-keeping area for LCD in the RAM.

9.4.1 How To Initialize The LCD.

What should be done in initialization is following.

1) Set up Address counter. Usually Page 0, Offset 0.
2) Set up Offset Counter Mode.
3) Set up Starting Page.
4) Select Display ON/OFF.

The tiny program shown blow initializes LCD's all
Segment Drivers as below.

PAGE COUNTER= 0
OFFSET COUNTER= 0
UP COUNTER MOOE
STARTION PAGE= 0
DISPLAY 0N

Note:

Whenever the power is turned on, LCD is initialized by
the reset pulse of the hard wear. At that time,
Display is turned OFF, Offset Counter is set to count
up mode. Another status is not determined.

The ROM #0 always reinitializes LCD as Display ON,
Starting Page = 0 and Offset counter count up mode
when a character is displayed.

- 165 -

LCD INTERFACE

.,..
9.4.1.1 Sample Program For LCD Initialization.

• .. ,
; ·In it i a 1 i ze Segment driver •
• ,

·--- Eciuaters ,

PORTA EQU "X089
PORTS EQU "X08A
LCDCOM EQU "X0FE
LCDSTAT EQU "X0FE

LCDINIT:
DI

A/8
CALL SELALL

CALL LCOBUSY
XRA A
OUT LCOCOM .

CALL LCOBUSY
MVI A,"X38
OUT LCDCOM

CALL LCOBUSY
MVI A,"X3E
OUT LCOCOM

CALL LCOBUSY
MVI A, ""X39
OUT LCDCOM

LCOBUSY:,
; Uait until LCO become Ready.

IN LCDSTAT
RLC
JC LCOBUSY
RET

SELALL:
; Select all Segment Drivers

- 166 -

,-

---'

; Inhibit disturbance for Por~

; Select all Segment Driver.

; Yait until LCD become Ready.

; Reset Address Counter.

; Offset counter Up mode.
;

; Set starting PAGE=0

; Display ON.
• ,

; Get LCD status.
; Move MSB to CF.
; Wait if LCD is busy.

LCD INTERFACE

MVI A, "XFF
OUT PORTA
IN PORTS
ORI 03
OUT - PORTS
RET

ENO

- 167 -

• ,
: S9h
; Get current status.
; Select block 9,10.

LCD INTERFACE ·•

9.4.2 How To Write A Character.

Writing a character on-the!LCO is performed by writing
some Bit patterns in the Display RAM of Segment Driver.

Basic sequence of writing a character on the·LCO is as
follows.

1. Select LCD Block(Segment Driver) which you want to PUT a
character.

2. Set the Offset counter mode.(Usually Up mode)

3. Set the Address where 1st byte should be written.

4. Write the Bit pattern.

S. Set Starting PAGE counter

6. Insure Display ON.

rf. Next sample program.

- 168 -

,,.-

LCD INTERFACE ..
9.4.2.1

- . .
Sample Program Of Writing A Character On The LCD.

This Sample program shows how to write a character on
the LCD. This routine updates the pointers which is used by
System ROM, ROM #0, to maintain the system circumstance.

; Sample program to write a character on LCD.
; This program performs same function as the ·following BASIC
; program •
•
' ; 10 LOCATE 0,0
; 20 PRINT "A"

30 END

CSRY EQU

CSRX EQU

LCTEY EQU

LCTEX EQU

PORTA EQU

PORTS EQU
LCOCOM EQU
LCDSTAT EQU
LCOIO EQU

ORG

LOCATE:
; LOCATE 0,0

LXI

PREP:

SHLO
LXI
SHLO

""XF3ES

""XF3E6

"'XFEB9

""XFEBA

""XB9

""XBA
"'XFE
"'XFE
""XFF
""XF000

H, ""X0101

CSRY
H, ""X0000
LCTEY

; Cursor Y position
•
'

(1 to 8)
; Cursor X position
•
'

(1 to 40)
; Character Y Position
•
'

(0 to 7)
; Character X Position

(0 to 39)
; Segment Driver Select
; Port. •
; ditto
; LCD command Port.
; LCD Status Port.
; LCD data I/0 Port.
; 614400

; To set cursor position
(0,0) • • •

'

;-- Select Block 1 to write (1,1)
DI ; Inhibit disturbance for

; Port A/B of 81C55.

- 169 -

; You need not do DI as
; far as no one

r
LCD INTERFACE

•

.

CHROUT:

•
WRITE:
• ,

MVI
OUT
IN
ANI
OUT

CALL
MVI
OUT

CALL
MVI
OUT

LXI
MVI

A,"X01
PORTA
PORTS
"811111100
PORTS

LCDBUSY
A,0
LCDCOM

LCOBUSY
A,"800110010
LCOCOM

H,FONTA
C,"X06

"

; changes the data port of
; 81CSS. You have to consi~er
; other INT routines.

• Select Block 1 , -· • ,
; Get current status.
; Deselect Block 9/10.
• •
; Wait until LCD become ready.
; Page 0,offset 0.
• ,

• ,
; Offset counter Up mode.

; Get start Address of Font A.
; Set Font size.

; Write data to Display RAM of LCD
• ,
; ENTRY: CHLJ = Font start address.
; CCJ ·= Length of Font.

CALL
MOV
OUT
INX
OCR
JNZ

LXI
INR

LCDBUSY
A,M
LCOIO
H
C
WRITE

H,CSRX
M

LXI - H,LCTEY
INR M

;---- Set starting page--------

; Wait until LCD become Ready.
; Get font Pattern to send.
: Write to Display RAM of LCD.
; Up date PTR.
; Bump Counter.
; To send next pattern.
; Offset counter is Auto
; increment Mode, so ~e don't
; care about OFFSET counter.
; Up date Cursor PTR.
; No check for end of line in
; this program.

MVI A,AX0FF; Select all Block.
OUT PORTA
IN PORTS

- 170 -

LCD INTERFACE

ORI "'800000011
...

our· PORTB

CALL LCOBUSY • Wait unti 1 LCD become Ready • • MVI A, "'X3F. • St~rting page 0 • . ,
OUT LCOCOM • ,

MVI A,"X00111001 • Insure display ON • • OUT LCOCOM
EI
RET

LCOBUSY:
IN LCOSTAT • Get LCD status • ,
RLC • Move msb to CF • • JC LCOBUSY
RET

FONTA: OB "'X3C, ""X12, "'X11 • Font data for I A I ,
OB "'X12,""X3C,"'X00

ENO

- 171 -

'-

LCD INT-ERFACE

t

9.4.3 How To Set/reset A Dot On The LCD.

The Sample program shown blow explains how to
set/re5et a dot on the LCD. It does same function as the
following·BASIC program.

100 CLS
110 FOR Y=9 TO 22
120 FOR X=60 TO 80
130 PSET<X,Y)
140 NEXT X
150 NEXT Y
160'
170 FOR Y=14 TO 18
180 FOR X=64 TO 76
190 PRESETCX,Y)
200 NEXT X
210 NEXT Y
220 ENO

9.4.3.1 Sample Program For SET/RESET Dot •

• ,
; Sample program for SET/RESET a Dot •
• ,

PORTA EQU
PORTS EQU
LCDCOM EQU
LCDSTAT EQU
LCOIO EQU

PSET:
DI

select.
XRA
STA

"XB9
"XBA
""XFE
LCDCOM
""XFF

A
SR

• ,
• ,
• • • • • ,

• ,
• ,

• ,
• ,

- 172 -

LCD block select •
II
LCD command •
LCD status •
LCD data I/0.

Disable a 11 interrupt
to keep correct block

To set SET flag.
Set/Reset Flag •

/

LCD INTERFACE ..
LXI B., "X140E ... CBJ=20 X count,CCJ=14 y ,

count.
LXI H,"'X0A09 • CHJ=X Position,CLJ= Y ,

Position.
PSETl:

PUSH H ~. Save CX,Y) Position. ,
PUSH B • Save X,Y count • ,

·CALL MAIN
POP B • Restore X,Y count • ,
POP H • Restore X,Y position ,
INR L • Advance Y position. ,
OCR C • Bump Y counter •

' JNZ PSETl

PRESET:
MV.I A,"XFF • To set SR Flag.

' STA SR • Set Unplot Flag • ,
LXI B,"X0C06 • CBJ=12,CCJ=06 ' LXI H,"'X0E00 • <CHJ,CLJ>=<14,13> ' PRESET1:
PUSH H • Save X,Y Position.

' PUSH B • Save X,Y counter • ,
CALL MAIN
POP B • Restore X,Y counter. ,
POP H • Restore X,Y position. ,
INR L • Advance Y position.

' OCR C • Bump Y counter •
' JNZ PRESET!

RET

MAIN:
•
' • CHJ = X position ,
• CLJ = y Position ,
• CBJ = X count ,
• CCJ = y count ,

PUSH H • Save X.Y Position.
' CALL DOT • Plot/Unplot a dot at CX,Y) ,

POP H • Retrieve Position.
' INR H • Advance X POSITION.
' OCR B • Bump X counter • ,

JNZ MAIN • ,
RET

DOT:
CALL LMAIN
LOA SR • Get SR flag. ,
ORA A • See if set/reset? ,
JNZ RESET • Branch if Reset. ,
MOV A,E • Get MASK pattern . ,

- 173 -

LCD INTERFACE ..
ORA D • a f CAJ = data to write.
JMP DISP

RESET:
MOV A,E • Get Mask Pattern. ,
XRI ""XFF • Reverse MSK pattern • ,
ANA D • CAJ = data to write. ,

DISP:
MOV D,A
CALL WRITE
DI
MVI A, ""XFF • Select all Block. ,
OUT PORTA
IN PORTS
ORI ""800000011
OUT PORTS
CALL LCDBUSY • See if Led Busy. ,
MVI A,"'800111111 • Starting Page 0

' OUT LCDCOM
CALL LCDBUSY
MVI A,'"'800111001 • Display ON. ,
OUT LCDCOM
EI
RET

LMAIN:
• ENTRY: CHJ·= X po!lition in Block-1
' • CLJ = y Position in Block-1
' • Reg: '

PUSH H • Save X,Y position. ,
PUSH H
CALL SEL2 • Select Blocl<-2. ' CALL SETADR • Set Address of Display RAM. ,
CALL READ • Read· the LCD. ,
POP H • Retrieve X,Y position. ,
CALL GETMSK • Get Mask Pattern. ,
POP H • Retrieve CX,Y> Position ,
CALL SETADR
RET

WRITE:
• Fune: Output CODATJ to LCD. ,
• ,
• Reg: A and Flags. ,

CALL LCOBUSY
MOV A,D • Get Data to r..1rite • ,

- 174 -

LCD INTERFACE·

READ:

OUT
NOP
RET

Entry: Non

•

LCOIO ·•
; Must be EI at final.

- l

Exit: COJ = Current Data in Display RAM.

Reg: A,O and Flags.

CALL LCOBUSY
IN LCOIO

to .
CALL LCOBUSY
IN LCOIO
MOV O,A
RET

GETMSK:
; Entry: CLJ ·= ·y Position
• ,
; Exit: CEJ = Mask Pattern •
• ,
; Reg~ A,L,E and Flags.

MOV A,L
ANI "B00000111
MOV L,A
.MVI A,"B80

MSK1:
RLC
OCR L
JP MSK1
MOV E,A
RET

SETAOR:
•
' • ENTRY: CHJ = X Position ,
• CLJ = y Position ,
• ,
• FUNC: Set Address ,
•
' • Register: ,
• A,H,L and Flags • ,

MOV A,L

on
on

; Wait until LCD become Ready.
; Dummy Read.You must do this

; get correct data.
•
' ; Get Valid Data.
; Save it.

; Get Y position.
• ,
; Set counter.

; Bump counter.
; Branch if not finished.
; Save Mask pattern.

Block-2
Block-2

Get Y position.

- 175 -

r·
LCD INTERFACE

LCOBUSY:

RAL
RAL
RAL
ANI
ORA
MOV
CALL
MOV
OUT
RET

; Entry: Non
• ,
•
' • ,
• ,
• ,
•
' • ,

Fune:

Exit:

Reg:

SEL2:

Wait

Non

A and

IN
RLC
JC
RET

"'81100'e000
H
L,A
LCOBUSY
A,L
LCOCOM

unti 1 LCD become

Flags~

LCDSTAT

LCOBUSY

; Select Block-2
;
; Reg: A and Flags •
•
'

SR:

OI
MVI
OUT
IN
ANI
OUT
RET

DB

ENO

A,"'800000010
PORTA
PORTS
"'811111100
PORTS

00

- 176 -

.. .
; ; Mbve Bi t4/3 to Bi t7 /6.

; Get page.
; CAJ = Page and OFFSET.

"' ; Save it.
; Wait until LCD become Ready.
; Retrieve Address.

Ready.

; Get LCO status.
; Set Busy FLG to CF.
; Wait if LCD is BUSY.

; Select Block-2

; Set/Reset flag.
; 0=set/FF=r~set.

LCD INTERFACE

· 9.4.4 How To Define A Characte·r

This section describes how to define the User
DefinabJe characters in PC-8201A.- And how to store them 1n a
portion of RAM where ROM #0 can use this your new Fonts. In
this section, BASIC command will be used to do some operation.

9.4.4.1 Structure Of Character And How To Define It.

One character consists of 6 * 8 dots. Vertical 8 dots
is handled by a byte. So in order to define a character, you
must define Sequential 6 bytes of data. The data AX3C, AX12,
AX11, AX12, AX3C, AX00 define "A" as follows.

- 177 -

LCD INTERFACE • '

08 < "'X3C, "'X12, "'Xif~ "'X12, "'X3C, "X3C, "'X00 >
: CG pattern for- 'A'

DATA Pattern

lsb
0

1

2

3

4

s

6

7
msb

0 1 2 · 3 4 s
+---+---+---+---+---+---+
: 0 : 0 1 I 0 : 0 : 0
+---+---+---+---+---+---+
: 0 I 1 I 0: 1·: 0 I 0 I
+---+---+---+---+---+---+
: 1 : 0 I 0 : 0 I 1 I 0
+---+---+---+---+---+---+
: 1 : 0 l 0 : ·0 1 0
+---+---+---+---+---+---+
: 1 1 1 I 1 I 1
+---+---+---+---+---+---+

1 : 0 : 0 I 0 I 1 : 0
+---+----+---+----+---+---+

1 I 0
+---+---+---+---+---·+---+
I 0 I 0 : 0 I 0 I 0 I 0
+---+---+---+---+---+--+

Fig 9.4

- 178 -

0
Font pattern

1 2 3 4 S
+---+---+---+---+---+---+

: * :
+---+---+---+---+---+---+

* : : * :
+---+---+---+---+---+---+
: * : * :
+---+---+---+---+---+---+
: * : : : : * : :
+---+---+---+---+---+---+
: * : * : * : * : * :
+---+---+---+---+---+---+
: * : - : * :
+---+---+---+---+---+--+
: * : ·: * :
+---+--~+---+-~-+---+---+

I
. I

+---+---+---+---+---+---+

LCD INTERFACE

-~ -~

9.4.5 How To Store The Your Own CG

This section explains how to store USER CG in to RAM
which also can be used by ROM #0. ,t

Assume that you have to define Fonts
the previous section. Each Font consists
Data has been BSAVEed in the RAM file named
start address is AXYYZZ.

as described in
of 6 bytes. Font
"FONT.CO", uhose

You can make "FONT.CO" in the following sequence.

1. Reserve area for "fONT.CO" by CLEAR command in BASIC.

CLEAR <length>, <startaddress>

2. Load "FONT.CO" into RAM

BLOAO "FONT"

3. Register the top address of the CG.

POKE A065216,<Start Address (High byte))
POKE A065215,<Start Address (Low byte))

After this sequence, ROM #0, for instance, BASIC, can use the
new Defined CG.

- 179 -

,,•·

LCD INT~RFACE ..•
9.S AVAILABLE SYSTEM WORK AREA

This section explains· how t6 use the system Character
Generator and how to use the available System work area.

9.S.1 How To Use The CG In System ROM.

You might want to use the CG of ROM #0 instead of
making new CG by yourself. In such a case, this Section will
help you.

The Character Generator of characters whose code 1s
from AX20 to AX7E, are stored in the highest portion of the
ROM i0, from AX7887 to AX7837. Each Character consists of 5
bytes: The sample program shown blow explains how to get the
character pattern and how to expand it into the standard
shap•, 6 * 8 pixels. Assume that this program is written to
be stored as the CO File in the RAM files and will be executed
with ROM #0 •

• ,
; ENTRY CAJ = character Code (AX20 to AX7E)
• ,

EXPAND:

NEXT:

SUI
MOV
ADO
ADO
ADO
MOV
MVI
LXI
DAO
LXI
MVI

MOV
STAX
INX
INX
OCR

A,AX20
C,A
C
A
C
C,A
B,"'X00
H,CGAOR
B
8,TEMP
O, "'XS

A,M
8
H
B
D

- 180 -

• , .. ,
; *2
; *4

; CCJ offset from base of CG.
• ,

; Set font data length.

; Get Font data.

LCD INTERFACE .. .
··--•

JNZ NEXT
ORA A
STA TEMP+S
RET

.. -...i

•

- 181 -

LCD INTERFACE ··!

-··'
9.5.2 VRAM AREA IN SYSTEM Work Area

The area from XFBCO to XFE3F in the RAM, is reserved
for VRAM area of the LCD. ~rt is divided into 2 portions.
Each portion can be hold. the character codes displayed on the
LCD at a time. So the each portion has 320 bytes. The
attribute data is not saved in this.area. Only the character
code is stored.

1st

2nd

"'XFBC0-"'XFCFF

"'XFD00-"XFE3F

; Keep previous Page
; in TELCOM.
; Current Displayed
; character is Saved.

The character code of the character displayed at the
location (1,1) on the LCD display is stored at "'XF000, and the
code of the character at (2,1) is stored at "'XFBC1 , and so
on. So the code of the left-lowest character, (40,8) is
stored at "XFC3F. This.rule is used in the standard program
in ROM #0. For instance, BASIC, TEXT and TELCOM use that area
like a VRAM in the traditional disk top personal computer.
The menu screen also utilize that area. But You can use this
area as you like. The data in this area does not effect the
information on the LCD display, as far as you use your o~n
display routine.

•.

•

"'.' 182 -

LCD INTERFACE

.. .
9.5.3 Reverse The Attribute Of The Specified Area,

ROM #0 has the Reverse Attribute Table in Work Area.

Th~ at~ribute ~ata-is ~ept i~ the area from AXFA60 to
AXFA87, · Each bit represents the each character Box on LCD.
(Therefore only 40 bytes can be handle the attribute of whole
LCD screen.) When the bit is off (0), it shows that the
character Box is displayed in normal mode. And the bit is
turned on, 1, that character Box is displayed in Reverse mode,
The relation between the Attribute bit and Character Box is
shown blow. The relation of the reverse attribute bit and
each character box is as follows.

+---+ :c 1,1):(2,1)l(3,1): : < 39, 1) : C 40 , 1 > :
+--+ :< 1,2):(2,2):(3,2): : < 39 , 1) : < 40 , 1) :
+--+

+--+ :c 1,8)1(2,8)1(3,8): : < 39 , 8 > I < 40 , 8 > : +--------~-----------------------------+
AXFA60 Bit0 (01,1)

Bit1 (02,1)
Bit2 (03,1)
Bit3 (04,1)
Bit4 (05,1)
BitS (06,1)
Bit6 (07,1)
Bit? (08,1)

AXFA61 Bit0 (09,1)
Bit1 (10,1)

I
. I

AXFA87 Bit0 (33,8)
Bit1 (34,8)
Bit2 (35,8)
Bit3 (36,8)
Bit4 (37,8)
Bit5 (38,8)
Bit6 (39,8)
Bit? (40,8)

- 183 -

- .. :. -· -:.

....

--~

·- -

CHAPTER 10

KEYBOARD INTERFACE

•,:.;, ;.,:·

'

10 • 1 THE KEYBOARD MATRIX·-

The Keyboard matrix of PC-8201A is as follows.

l
i--?A.1

·i-------·'----f80

Fig 10.1

- 184 -

KEYBOARD INTERFACE

. . J.
The abbreviation PAn (PA7, PA6, ••• , PA0) and PBn

means the bit of· PORT A and B of 81CSS. Please refer to the
follo~ing sections about I/O ports. And also, KDn (K07, KO6
•• , KD0) represents the bit of the KEYIN, Input port for the
Keyboard. -' 4

Note: •;• means <SHIFTED CODE>/ <UNSHIFTED CODE)

- 185 -

KEYBOARD INTERFACE

f

10.1.1 I/0 Port For Keyboard

10.1.2 KEYBOARD STROBE----- PART A/8 Of 81CSS

msb 7 6 s 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
:KS7lKS6:KSSlKS4:KS3:KS2lKS1:KS0: OUT AXB9
+-------------------------------+ : X: X: X: X: X : X: X :KSS: OUT AXBA
+-------------------------------+
KSS ••. KS0 KEYBOARD Strobe

0 = Strobe OFF
1 = Strobe ON

- 186 -

KEYBOARD INTERFACE
. t

10.1.3 KEVIN ----- Read Keyboard Data

. .
. " .msb 7 6 s 4 3 2 1 0 1 sb

+---+---+---+---+---+---+---+---+
:KD7lKD6:KDSlKD4:KD3:KD2lKD1:KD0: IN AXEB
+---+---+---+---+---+---+---+---+

KD7 • • • KD0 ---- Keyboard data
0 = Depressed
1 = Not depressed

Read the strobed column of the keyboard. Please refer
to KEY MATRIX shown before to understand the relation between
KDn and Key on the key board.

- 187 -

KEYBOARD INTERFACE

10.1.4 Keyboard Scanning

Key scan must be per-for-med by software. It can be - ...
done by the interrupt, RST 7.5. The RST 7.5 Pin of 80C55 is
connected to the TP PinCNo.10) of calendar- clock CuPO1990).
So that interrupt occurs every 4 msec in the standard system.

- 188 -

KEYBOARD INTERFACE

,.
10.2 SOFT WARE FOR KEYBOARD OPERATION.

10.2.1 How To Read The Keyboa~d

Basie Keyboard read se~uenee is as follows.

1. Turn on the strobe pulse to the desired column you want to
read.

2. Read the column from KYIN port.

3. Strobe off

The following Sample program shows how to read the Keyboard in
detail.

- 189 -

KEYBOARD INTERFACE
. '

10.2.1.1 Sample Program Reading Keyboard.

Following Sample program read the every column and
save the data into the KYBUF(Keyboard Buffer) •

• ,
; Read CURRENT KEY BOARD STATUS •
• ,
; Note: Make sure Keyboard strobe is
•
' • ,

not disturbed while reading the key board •
You have to care of the other interrupts •

• ,
; Equator

PORTA EQU
PORTS EQU
KEVIN EQU

REAOKEY:

NOMAL:

ORG

LXI
MVI
OUT
IN
ANI
OUT

IN
STAX
IN
ORI
OUT
MVI

INX

OUT
MOV
IN
STAX
MVI
OUT
MOV
RLC

"X89
"XBA
"XES

"XF000

B,KYOATA
A,"XFF
PORTA
PORTS
"XFE
PORTS

KEYIN
B
PORTS
"X01
PORTS
A,"B11111110

B

PORTA
D,A
KEYIN
B
A,"XFF
PORTA
A,D

- 190 -

; Keyboard Strobe Port
ditto •

' ; Keyboard data Port.

; Get PTR for buffer.
; Disable normal key strobe
• ,
; Get PortB Status.
; SET B0=0ff.
; Activate Strobe for
• , Special key •
; Read keyboard.
; Save Data.
; Get St8tue of Port B.
; Set B0=0n.
; Strob9 off.

; Prepare PTR for key Buffer
; for next data.
; Strobe On

; Get data.
; Store it.

; Strobe off.
; Retrieve strobe data.
; Strobe for next column.

KEYBOAROCE

• JC
RET

' OS
OS
OS
OS
OS
OS
OS
OS
OS

SNO

NOMAL

·1
1
1
1
1
1
1
1
1

- 191 -

1

....

; All done return to caller.

• ·- • PB0 column ,
• PA0 ditto ,
• PA1 ditto ' • PA2 ditto ' • PA3 ditto ' • PA4 ditto ' • PAS ditto ' • PA6 ditto
' • PA7 ditto ,
• Be careful that ,
• Bit OFF means key ,
• is depressed • '

CHAPTER 11

CMT INTERFACE

. ~

The physical interface of the CMT is described in this
chapter. You can find how to control the Motor of the CMT,
ho~ to write a data to the CMT and how to read a data from
CMT.

There is no description about file ·record format of
PC-8201A. If you want the information about it, please refer
to another technical manual about PC-8201A, which has already
been released by NEC HE in Chicago.

- 192 -

CMT INTERFACE

11.1 HARDWARE FOR CMT

PC-8201A has the CMT
data with Audio Cassette.

'l

interface for reading/writing
~

Reading/writing data with CMT is done via SID Pin ,SOD
Pin of CPU(80C85). And Motor is controlled by SCP (System
Control Port,AX90). The on-bit, Logical High, is represented
by 2400Hz wave (called MARK) and the off-bit, Logical Low, is
1200Hz wave (called SPACE). So the Baud Rate of the CMT can
be up to 1200 bps, bit per second. (System ROM, ROM #0 Uses
600 bps to maintain the compatibility with PC-8001A.)

- 193 -

CMT INTERFACE

11.1.1 Writing Operation.

While S00 is high, MARK is put out to MIC and TxC.
Otherwise, SPACE is put out. Refer the next illustration.

SIO

MIC/TxC

high

low

+-------+
I
I

+-------+ +--------
+-------+ +-------+

I
I

:< MARK>:<SPACE>:<MARK >:<SPACE>:MARK

Fig 11.1
•

- 194 -

CMT INTERFACE

11.1.2 Reading Operation.

Input wave from EAR Pin' is~~eformed to Square wave and
sent to SID Pin of 80C8S as shown olow. The input wave is
inverted on the way to SID Pin from EAR Pin. In reading
operation, the electric high/low. level has no meaning. The
pulse frequency indicate whether high or low of the data. The
frequency, 2400Hz means logical high ,and the frequency,
1200Hz means low.

EAR-----

SDI----

:<--MARK--->:<--- SPACE----->:

-+ +-+ +-+ +-+ +--+ +--+ +--+ +---

+-+ +-+ +-+ +-+
2400Hz

Fig 11.2

- 195

+--+ +--+
1200Hz

+--+

CMT INTERFACE

•

11.1.3 Baud Rate Beneration.

Baud rate is Generated by software timing routine. In
writing operation, the bit data r.or SOD Pin is set and it is
held during the proper duration by the software wait-routine.
On reading, a bit data is read in proper interval which is,
controlled by software. Refer to the following section ·about
the software. ·

•

- 196 -

,,.

CMT INTERFACE

. ..

-... --.;

11.1.4 I/0 Port For CMT

11.1.4.1 SCP---- SYSTEM CONTROL PORT

I/0 Address and Data Pattern

msb 7 6 s 4 3 2 - 0 · 1 sb
+----+-~--+----+----+------+--------+
: XX : XX: XX : XX :REMOTE: XXXXXX :
+----+----+----+----+-----+--------+

REMOTE CMT Motor control.

0 = CMT Motor OFF
1 = CMT Motor ON

Description:

OUT "'X90

The current status of this por-t is saved at
SYSSTAT("'XFE44), so you have to update this area when
you want to change the statl.J!S of this port.

11.1.4.2 PPI 81CSS Command Set

I/0 Address and Data Pattern

msb 7 6· S 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
lTM2lTM1: 0 : 0 : ? : ? : 1 : 1 : OUT "XB8
+---+---+---+---+---+---+---+---+

TM2/1 Timer Command for PPI

- 19'] -

CMT INTERFACE:

TM2 TM1
0 0
0 1
1 0
1 1

NOP
Stop

--- Stop after Terminal Count
Start-J

- 198

CMT INTERFACE

......
11.2 SOFTWARE FOR CMT

11.2.1 CMT MOTOR CONTROL

CMT Motor on/off is simply performed by having access
to the I/0 PORT, SCP (System Control Port; "'X90). Output to
SCP with on at the bit 3 starts the CMT Motor, and with off at
bit 3 stops it.

Please make sure to update SYSSTATCXFE44) in work Area •

• ,
• Turn on the motor • ' • ,
CMTON:

LOA "'XFE44 • Get SCP port status • . ,
ANI "'B11110111 • See if Motor ON? ' RNZ • then r"eturn • ' ORI "B00001000 • Bit 4 on • ,
OUT SCP • Turn on Motor • ' STA "'XFE44 • Up-date Sep status • ' RET

• ' . ; . Turn off CMT Motor •
•
' CMTOFF:

LOA "'XFE44 • Get SCP Status • ,
ANI "'811110111 • Bit 4 OFF. ,
OUT SCP • Turn off Motor • ' STA "'XFE44 • Up-date SCP status • ,
RET

- 199 -

CMT INTERFACE

i1.2.2 Baud Rate Generati~n
_,.; _,..,

~. Baud Rate must be gener~ted- by software timing
routine. The CPU uses 2.4576MHz clock, so the time of 1 bit
output/input should be counted with this clock. The sequence
of the counting operation is shown blow.

+-----------+-----------------+ : BAUD RATE: NUMBER OF STATE:
: for 1 Bit

+-----------+-----------------+
75 bps : 32448

+-----------------------------+
150 16224

+-----------------------------+
300 8112

+-----------------------------+
600 4056

+-----------+--------------.--+
1200 2028

+-----------+-----------------+
Fig 11.3

- 200 -

CMT INTERFACE

.'!' p-,
11.2.3 Write A Data To The CMT

Writing a data to the CMT is performed by controlling
SOD pin. Following sample program~illustrates how to write a
byte to the CMT.

Sample Program for writing data to the CMT

Write a byte to the CMT,the lowest routine.

Assumption:

,
CMT Motor rotating regularly and CALLED
Interrupt disable.

• ,
; INPUT: CAJ = Data to be send •
• ,
; OUTPUT : Non •
• ,
; BAUD Rate= 600 bps
• ,
WRITE:

BYTEO:

SITO:

MOV
MVI
SIM
CALL
IN
MOV

MOV
RLC
MOV
MVI
JC
MVI

SIM
CALL
OCR
JNZ
MVI
RET

8,A
A,"'X50

HOLD
PORTC
C,08

A,B

B,A
A,"'XD0
SITO
A,"'X50

HOLD
C
BYTEO
A,"X00

- 201 -

; 4: Save data.
; 7: Write start bit.
; 4:

18: Wait 4043 State • • ,
; . 10: Dummy to adjust timing.

4: Set data length in bit • • ,

•
' •
' •
'

4: Retrieve data •
4: Set a bit in CF •
4: Save data •

To send MARK. ; 7 =·
;10/7: Branch if HIGH.

7: To send SPACE • • •
; 4:
; 18: Wait 4018 state.
; 4: Bump counter.
;10/7: To send next bit.
; 4:· To send stop bit.
; 10: It is responsible to
; : CALLER Routine for
; : making
; : an adequate
: : length of the stop
; bits.

CMT INTERFACE

; HOLD1 gives
24 * CHLJ + 7 (+18>

; states delay. (+18) means
; So HOLD giv7s 4043 states

• ,

• -4 • ,

HOLD:
LXI H,167

HOL01:
DCX H
MOV A,L
ORA H
-JNZ HOL01
RET

...

"CALL" instruction Status.
delay including "CALL" of Caller.
..... .~

; 10: For 1 BIT (6008aud)

; 6:
: 4:
; 4:
;10/7:
; 10:

- 202 -

. CMT INTERFACE

.. ,
11.2.4 Reading A Data From The CMT

Following sample progr~m s~owe how to read a byte form
CMT •

• ,
; Sample Program for Reading a BYTE.
• , Assume Called with Interrupt disable •
READ:

BYTE!:

• ,

CALL
JC

LXI
CALL
MVI

CALL
MCV'
RLC
MOV
OCR
JNZ
RET

; Get a BIT .
• ,

BIT!
READ

H,·????
HOLD1
C,8

BITI
A,B

B,A
C
BYTE!

; EXIT: CF= 1 if MARK.
• , CF= 0 if SPACE •
• ,
BIT!:

CALL SYNC
MOV A,D
CPI 16

PUSH PSW
LXI H,???
JC BITI1
LXI H,???

BITI1:
CALL HOLD!
POP PSU

- 203 -

.

• 10: Search for start ' ;10/7: Wait unti 1 Start bit
• • has come • ' •
• 10: ,

• 7: Read 8 BIT. '
• 18: ' • 4: ,
• 4: Move CF to Bit-0. ,
• 4: ,
• 4: Bump counter • ,
;10/7: Read next BIT.
• 10: No check for Stop bit. ,

• 18: ,
• 4: Get counter • ,
• 7: See whether MARK ,
• • or SPACE • , •
• • If MARK then CF=l, , •
• • else CF=0 • , •

12: Save CF.
• 10: Assume MARK. ' ;10/7: Good assumption.
• 10: ,

• 18: ,
• 10: ,

CMT INTERFACE

'·

•
'

RET

: Calculate Pulse Duration •
•
'

··"' : .:f 1~:

. ' ; EXIT: COJ = loop count in this ~outine •
•
' SYNC:

SYNCl:

SYNC2:

MVI

RIM
ANI
MOV

RIM
"ANI
CMP
JZ

RIM
OCR
JZ
ANI
CMP
JNZ
MOV
CPI

JNC
RET

0,36

"X80
E,A

"X80
E
SYNCl

0
SYNC
"X80
E
SYNC2
A,D.
11

SYNC

- 204 -

• 7: Reset counter-_ • ' • • Mar-gin i!I about 10%. ' •
• 4: ' • 7: Isolate SIO bit • ' • 4:Save it • ,

• 4: Get Current status • ,
• 7: Isolate SID bit • , . 4: Same status? ,
:10/7: then wait.

• 4: Get current SIO • ' • 4: Bump counter • ' ;10/7: Too long,Restar-t.
• 7: Isolate SID • ' • 4: ,
;10/7:
• 4: Get result • ,
• 7: Too shor-t?C392 9tate, • • • mar-gin 20%) ' •
;10.17: then restart.
• 10: ,

• _.J

CHAPTER 12

SERIAL INTERFACE

PC-8201A has 3 channels of Serial Interface. They are
used by RS-232C, SIO1, SIO2. The difference bet~een SIO1 and
SIO2 is only the shape of connector.

This chapter describes how to control the Serial Port.

- 205 -

... ,_ ... , .,

SERIAL INTERFACE

12.1 HARDWARE OF SERIAL INTERFACE~ -4

UARTC6402) and PPIC81C55) control the Serial
Interface. Since they are shared 1 by 3 channels, Only one
channel is available at a time. Refer to the •pc-8201A USER'S
GUIDE• about capacity of the hard~are.

-- -2~6 -

SERIAL INTERFACE

12.1.1 I/0 Port ·?

12.1.1.1 Channel Select -- (System~Control Port)

I/0 Address and Data Pattern

msb 7 6 5 -- 0
+----+----+------------+
:SRI2:SRI1l XXXXXXXXXX: OUT "'X90
+----+----+------------+
SRI2/1 Serial Interface Select.

SRI2 SRI1
0 0
0 1
1 0
1 .1

User
Not Used
SI02 (Disk Driver)
SI01
RS-232C

Note: Current status of this port is saved
in SYSSTAT C"'XFE44) by System ROM.

- 207 -

SERIAL INTERFACE

12.1.1.2 UART Mode Control

msb 7 - S 4 3

"-i

-~
1

+-------+----+----+----+---+---+ ·: xxxxx lCLS2:CLS1: PI :EPE:sas:
+-------+----+----+----+---+---+
S8S Stop Bit Select

0 = 1 bit
1 = 2 bits 00

OUT "XD8

(*) When Data length is 5 bits,
Stop Bits is 1.5 bit.

EPE Even Parity Enable
0 = Odd Parity
1 = Even Parity

(Meaningless if Pl= 1)

PI Parity Inhibit
0 = Parity Enable.
1 = Parity Disable

CLS2/1 Character Length Select
"800 = 5 bits
"B01 = 6 bits
"B10 = 7 bits
"811 = 8 bits

- 208 -

SERIAL INTERFACE

12.1.1.3 UART Status Read -..:•1 .::t
I

I/0 Address and Data Pattern
., _,_ .;.J

msb 4 3 2 1 0 lsb
+-------+----+----+----+----+------+
: XXXXX :TBRE: PE : FE l OE :dcd/dr-: IN "'XDB
+-------+----+----+----+----+------+
dcd/dr- OCO/OR on off C0=on/1=off)

OE Over--r-un Err-or- (!=Detected)

FE Framing Err-or- Cl=Detected)

P~ Parity Err-or- (!=Detected)

TBRE Transmit Buffer- Register Empty
1 = Ready to receive data to transmit.

\

- 209 -

SERIAL INTERFACE

· 12.1.1.4 UART Saud Rate <PP!' 81CSS Timer Section)

I/0 Addre"ld Data Definition

msb 6 5 4 3 2 1
J

0 lsb
+---+---+---+---+---+---+~--+

. :M2 :T13:T12:T11:T10:r09:T00:
+---+---+---~---+---+---+---+
:T06lT05lT04lT03:T02:T01:T00:
;---+---+---+---+---+---+---+

OUT AXBO

OUT AXBC

e ·Specify timer output Mode

AB00 = Single Square Wave
AB01 = Continuous Square Wave
AB10 = Single Pulse On
AB11 = Continuous Pulse

1:
set a Baud Rate use blow value.

--------+---------+-------~-+ ud Rate : AXBC I ., AXBO
--------+---------+---------+

75 00 48
·--------+-~-------+---------+ 150 . : 68 45
·--------+--------+---~-----+

300 00 42
-~-------+---------+---------+

600 00 41
--------+---------+-~-------+

1200 80 40
---------+---------+---------+ 2400 40 40
---------+--------+-~-------+

2400 40 40
---------+---------+---------+

4800 20 40
----------+---------+---------+

9600 10 40
----------+---------+---------+

19200 08 40
-----------+---------+---------+

Fig 11.1

- 210 -

I

SERIAL INTERFACE

:-, . .,
NOTE:

It is impossible to read the current UART
status directly. ROM #0
always saves the new stat~s jn RAM when it is changed.
Refer to Chapter
12.3.

- 211 -

SERIAL INTERFACE

:

12.1.1.5 UART DATA I/0 Port

I/0 Port and Data Pattern

msb lsb
+--+--+--+--+--+--+--+--+
:D7lD6:Ds:D4:D3:D2:D1:00: IN/OUT Axes
+--+--+--+--+--+--+--+--+

Note:
If the data length is less than 8 bits, Output

data must be right justified. Input data is right justified
by UART.

- 212 -

SERIAL INTERFACE

12.2 SOFTWARE DESCRIPTION.

, 12.2.1 How To Initialize Serial Port

The basic sequence to initialize Serial Port is as
follows.

1. Select Channel

2. Set Baud Rate.

3. Set transfer mode.

Following Sample program shows the Initialization sequence
more detailed.

The sample program listed blow explains how to
initialize serial port. This sample program Initialize
RS-232C Channel as 9600bps, even party,7 bit data length,1
stop bit and no control for Xon/Xoff,SI/SO. And it Updates
work area for ROM#0 can be use the same mode. You may skip
that portion if you want. They is no problem even if you skip
the updating the data,because ROM#0 always initialize RS-232C
Port when entering to Term mode or "OPEN "COM:"" ·of Basic
command is issued by the Mode string.

- 213 -

SERIAL INTERFACE

i .

-~f

12.2.1.1 Sample Program ••• How To Initialize SERIAC Port

; Sample Program Initialize Serial Port • .
; Data in system area ~hich you must update.

SERMOO EQU ""XF406
• ""XF406 ' • "'XF407
' • "XF408 ,
• "XF409 ' • "'XF40A ' • "'XF408 ' INHDSP
INHIBIT
COMACT EQU "'XFE43

SYSSTAT EQU "XFE44
BAUORT EQU "XFE4A
address.
INHB.IT EQU "XFE4·1

• I/0 Port Address • '
SCP EQU "X90
PORTS EQU "'XBA
TIMEL EQU "XBC
T-IMEH EQU "XBO

RTSDTR EQU "X3F

INITSERI:
; ENTRY: CCJ = USER IO.

; 6 bytes for MODE string.
; Baud rate Specifier •
; Parity Mode •
; Word Length •
; Stop bits •
; XON/XOFF contorl •
; -SI/SO contro 1 •

; current user IO for
; serial port.
• ,

• ,
• ,

"'800 = Not used •
"'801 = SI02
"810 = SI01
"811 = RS-232C

; SCP port status.
; Baud Rate Table entry

; 0 inhibits XONIXOFF control.

; System Control Pert.
; RTS/OTR set port.
; Timer Set Low.
• , II II High •

; RST/OTR data for RS-232C.
; Use "XFF for SI01/2.

; CBJ = Baud rate specifier. ASCII Number (1 to 9)
; Same Number of "STAT" of TELCOM.

See if Serial Port is available.

LOA COMACT ; Get current user IO.

- 214 -

t
f

i
! .

SERIAL INTERFACE

..
SELECT:

ORA
JZ
CMP
JZ

·sTc
RET

; Reserve

·-- Set ,

DI
MOV
STA

RRC
RRC
MOV
LOA
ANI
ORA

OUT
STA

BAUD

SETBAUO:
MOV
STA
SBI
RLC

LXI
MOV
MVI
DAD
SHLO

MOV

· J

A • No one use Serial I/0? ' SELECT • then branch. ,
C • SAME USER? ' SELECT • Th~:m branch. ,

·.-. Set Error.FLG. ,
• Re~urn to caller. '

Serial Port-------
; Inhibit all disturbance.

A,C ; GET USER ID.
COMACT ; Set User ID. Be sure reset

; Use ID to @0 after all task
; finished,else the serial

C,A
SYSSTAT
"'B00111111
C

SCP
SYSSTAT

RATE--------------

A,B
SERMODE
• 1 •

H,TIMTBL
C,B
B,0
B
BAUORT

A,M

- 215 -

; port
; can not be shared to
; another user.
; Move Bit0-1 to Bit 6-7

• Save it. ,
• Get current SCP status. ' • cancel channel contro 1 • ,
• Set new channel control ,
• bits • ' • Select channe 1 • ' • Update SCP status., ,

• Get BAUD RATE IO. ,
• Update Baud rate Specifier. ' • Convert to Binary Number. ' • *2,Because table entry is ,
• 2 bytes • ' •
' • CCJ = Offset ,

• Save entry point for
' • Music routine. ,
• Music routine in ROM #0 ,
• destroy temporary changes ,

the timer count and
• reinitializes it with ,
• this entry data after ,
• finish • ' . Refer Chapter 12.3 ,

• Get Lot..1er value. ,

SERIAL INTERFACE

OUT
INX
MOV
OUT
MVI
OUT

TIMEL
H
A,M
TIMEH
A,"XC3
""X88

; SET TRANSFER MOOE.

MOOE:

• ,

IN
ANI

OUT
IN

MVI
OUT

Update

LHLI
MVI
INX
MVI
INX
MVI
INX
MVI
INX
MVI
XRA
STA
EI
RET

TIMTBL: DB
08
OB
OB
OB
OB
DB
OB
DB

PORTS
RTSOTR

PORTB
"XCS

A,"800001110
008H

SERMODE

"X00, "X48
"X68,"X45
"X00, "X42
"X00, "X41
AX80,"X40
"X40,"X40
"X20,"X40
"'X10,"X40
"X08,"'X40

- 216 -

•
'
; Get Higher Value.

.• ; -l'o 9tart timer.
; Uee this value to
; etart Timer •.

~

• ,
• IF 232C RTSOTR=AX3F to ,
• activate RtS/DTR, ,
• else "XFF to unactivate • ,

• Dummy read to clear ,
• Receive Buffer Register • ,
• 7bit,Even Parity,1 stop bit. ,
• Set Mode. '

; Set PiR
; Set Parity check mode.

; Set Word length.

; Set Stop bit length.

; Set XON/OFF control mode.

; Set SI/SO control Mode.
; Set CF=0
; Disable XON/XOFF control.

• 75 bps ,
• 150 ,
• 300 ' • 600 ,
• 1200 ,
• 2400 ,
• 4800 ,
• 9600 ,
• 19200 ,

SERIAL INTERFACE

.... -,
12.2.2 SEND A Data To T~e Serial Port

~ The sample program shown blo~ describes how to send
data to the serial port. It performs no XON/NOFF and no SI/SO
contro 1.

; SEND A data to the serial port
• ,
: ENTRY: CCJ = DATA TO BE SEND
• ,

WRITE:
IN
CPI

JZ
MOV
OUT
RET

"'XD8
"800010000

WRITE
A,C
.... XC8

r--.

- 217 -

; Get UART status.
; See if transmitter buffer
; register Empty?
; Wait TBR become empty.
; Get character to send •
; Send it to the serial port.

SERIAL INTERFACE

--f

12.2.3 Read A Data From Serial Port.

·• ~ Sample program shown blow~explains how to read data
from serial port by RST6.5. This sample only read data form
serial port with RST6.5,no XON/XOFF and no SI/SO control is
performed.

:** Read a data from Serial Port.

;Read a data By RST6.5

ORG "'X3C • ,

RST65: DI
JMP READ

ORG ????
READ:

PUSH H • ,
PUSH D
PUSH B
PUSH PSW
IN "'XC8 • ,
MOV L,A • ,
IN "'XD8 • ,
ANI "'B00001110 • ,
MOV H,A • ,
SHLO BUFFER
POP PSW • ,
POP B
POP D
POP H
EI
RET

BUFFER OS 1 • ,
OS 1 • ,

- 218 -

Entry point of RST6.5

Save registers.

Read the data
Save it •
Get error status •
Strip error bit.

Restore Registers.

Got Data.
Error status .

I

~-,:-

~~ ,.
& ~ -~ r
ti
r
t
[~

~
ti
~
i~
i

t~
r
;~

' ~';

~
l
}

~~
[
V

~
i,;

~
t
~

r

SERIAL INTERFACE

12.3 AVAILABLE SYSTEM AREA. -~ ··t

~- You may want to-use the sy~tem area for your use. In
this section, the available work area of ROM #0 is described.
Make sure to keep the compatibility with System ROM, if you
want use this area.

Serial input Buffer from AXFE4C to AXFFC3, is reserved by
System ROM as SERIAL Input Buffer. And You can use it for
your own routine.

SERMOD saves their RS-232C mode string

This area has 6 bytes data which indicates the RS-232C
String Mode, specified by "STAT" command in TELCOM or OPEN
"COM:" command in BASIC. The contents are following.

SERMOD at AXF406 0S6 • RS232C String mode Buffer ,
"'XF406 • Baud rate specifier (1 to 9) ·' "'XF407 • PArity Mode CN/E/0/I) ' "XF408 • Word length specifier (5 to 8) ,
AXF409 • Stop bit (1/2)

' AXF40A • Xon off control (X/N)
' "XF408 • SI/SO control CS/N)
'

INHIBIT Cat "XFE42>

This byte is the XON/XOFF Inhibit Flag.
XON/XOFF ~ontrol ,else enabled.

COMMACT ("XFE43 Byte)

0 inhibit

This byte indicate who is using serial port as blow.
Please reset to 0 after using the serial port,
otherwise the serial port is not available for another
user.

"X00 = No user
"X01 = SI02
AX02 = SI01
"X03 = RS-232C

- 219 -

SE~IAL. INTERFACE

i.:

CMPNT

UTAOR

(at "XFE46) 0S1 ; Character -count in Suffer.

This byte ha!!I. the character count in Seri a 1
Buffer.

. ,:J

This byte indica·te last read character displacement.

<"XFE47 Byte>

This byte indicate
displacement.

last written character

BAUORT C"'XFE4A)

This points the tab 1 e of the Baud rate.. Refer to the
Chapter 12.2.1.1 ·sample Program.

- 220 -

,:

l.·

CHAPTER 13

BARCOOE READER

··.~
_,.
. -----··--

This chapter explains Electric specification and Basic
theory of Operation of the Barcode Reader.

The Barcode Reader program included in· the PC-8201A
Personal Application Kit assumes that operation is done uith
the HEOS-3071 (pr-educed by HP Corp.) . ·

13.1 ELECTRIC SPECIFICATION

Refer to the "PC~8201A USER'S GUIDE" about the shape
and Pin Connection of the BAR Code i~te~face a~d elect~ic
specification.

You may connect any Bar Code Pen to this interface.
But NEC recommends the products of YHP(YOKOKAWA HP) or (MECANO
Kogyo) and it is better that the Pen has the Power switch, for
saving the electric power of the PC-8201A.

The data line of Barcode Reader is connected to the
Pin-2 of BCR. And this pin is connected to the RSTS.S of
CUP(80C85) and Port C-3 of 81C55 as sho~n blow •

. ~~B

~ G-~e --, 1?1~ G-~ 5 ,...,_ __

7711

'Ice.

- 221 -

Fi'i~ {3.1

BARCOOE REAOE.R

. J

While the Bar-code Re.ader ~is p01.1er-ed on, PIN-2 is kept
as 101.1 1 eve 1 , and RSTS.5 lS High.

BLACK BAR is represented by logical Low, SPACE BAR by
High respective 1 y·.

-" ..

13.2 THEORY OF OPERATION

This section describes the basic sequence of the
reading data from Bar-code Reader.

1. If power- on. RSTS.5 is activated. At the fir-st point of
the RSTS.5 routine which is inter-r-upted by RSTS.5 disable
a 11 inter-r-upt.

2. Pole the Bar- Code DATA por.t. · And calculate the duration
of same status and save the status and Duration.

3. If Low level continues too long assume that Po1.1er- off and
enable

4. Decode the got.Data and transfer the data to the upper­
r-outine.

- 222 -

--

CHAPTER 14

PARALLEL INTERFACE

This chapter describes ho~ to
Printer Interface of the PC-8201A.
Centronics compatible a 8-bit parallel

14.1 HARDWARE SPECIFICATION

14.1.1 Physical Interface Of PC-8201A

control the
It is the

interface.

. PC-8201A has the Centronics compatible
parallel interface. It uses 26-pin connector.
Refer to the PC-8201A USER'S GUIDE about the Pin
connection and ~ignal name.

14.1.2 I/0 Port For PRINTER Interface.

14.1.2.1 Port A---- Data Out Put Port For Printer.

lsb 7 6 S . 4 3 2 1 0 lsb
+---+---+---+---+---+---+---+---+
:Po7:Po6:Pos:Po4:Po3:Po2:Po1:Po0: ouT Axs9
+---+---+---+---+---+---+~--+---+

- 223 -

PARALLEL INTERFACE

•

P07 to P00 DATA output to Pr-inter.

NOTE: This port is used by another user.

- -'

14.1.2.2 Port C ---- BUSY,SLCT Signal Read

msb 7 6 5 4 3 2 1 0 lsb
+--+--+--+--+--+----+----+----+
:xx:xx:xx:xx:xx:susv:sLCT: xx: IN Axse
+--+--+--+--.+--+----+----+----+

BUSY 0 Pr-inter READY
1 Printer BUSY

SLCT --- 0 deselect
1 Select

14.1.2.3 SPCCSystem Control Port> --- STROBE Output
Port

msb 7 6 5 4 3 2 1 0 lsb
+--+--+----+--+--+--+--+--+
:xx:xx:PsTs:xx:xx:xx:xx:xx: ouT Ax90
+--+--+----+--+--+--+--+--+

PSTB --- 0 Strobe OFF
1 Strobe ON

- 224 -

PARALLEL INTERFACE

14.1.3 Basic Theory Of Writing A Data To Centronics

- The basic sequence to write data to the
Centronics printer is as follows.

1. If Printer i9 bu9y, wait a while. Other~ise go
ahead.

2. Output a byte to the data lines and hold it.

3. Change the strobe level to low.

4. Wait a adequate duration holding the DATA.

s. A 1 1 has been done, then finish else repeat
(1).

The timing chart illustrates the sequence.

Para 11 e 1
DATA

DATA
STROBE

BUSY

__ xxxxxxxxxxxxxx ________ _
->:T1:<- ->: T2 l<-

-------+ +-------------------->: T3 :<-
+-----+

-------·--+
-------------+ +-----

T1,T2 >= 1.0 uSec
1.0 uSec < T3 < 600uSec

Fig 14.1

from

Refer to the Manual Qf Printer about the
actual Duration of Tl to T3.

- 225 -

PARALLEL INTERFACE

14.2 SOFTWARE SPECIFICATION

1 ;4.2.1 How To Write A Byte To The Printer.

Tiny program shown blow explains how to send a
character to the Parallel port. That sample Program does
same function as Basic command,

• ,
• ,
• ,

LPRINT •ABCDEFGHIJ•

600000
;-- Ec;uater

; System Control Port.
; Printer Data Port.
; Printer Status Port.

SCP EQU
PORTA EQU
PORTC EQU
SYSSTAT

"'X90
"'XB9
"'XBB
EQU "'XFE44 ; SPC status.

START:

PRINT:

LXI
MVI

IN
ANI
XRI
JNZ

DI

MOV
OUT
LOA
MOV

· ORI
OUT
MOV
OUT

MOV

H,BUF
C,10+2

PORTC
6
2
PRINT

A,M
PORTA
SYSSTAT
B,A
""800100000
SCP
A,B
SCP

8, ""X03

- 226 -

; Set PTR.
; Set data length.

; Get Printer status.
; Strip BUSY,SLCT bits.
; See if ready.
• , if not,then wait.

; Inhibit disturb for Port A
; of 81CSS.
; Get character to Print.

Put data on the DATA line.
Get SCP status.
Save It.
Set STROBE.

; Please set appropriate
; value for your Printer.

PARALLEL INTERFACE

WAIT:
OCR 8
JNZ WAIT
EI

.'. ~
INX H ; Point to Next
OCR C
JNZ PRINT
RET

BUF: 08 'ABCDEFGHIJ'
DB 13,10

END

•

- 227 -

/

....

CHAPTER 15

HARDWARE

!r to another technical manual about the detail
speci~n of PC-8201A's hardware. That manual has already
been oy NECHE, Chicago. Please contact with them. In
this r, only most important data is listed up.

- 228 -

HARDWARE

15.1 SYSTEM SLOT

15.1.1 Assignment Of Signal
.. · ----. _:. ·,· -t· .. .-'..:··-··. ··~ ... -i -----=;-. - ---------~~~- -

·_System Slot

S\"STc.\l SLOT

I i Pin number I Sigr:a/ name I Remarks I I
1 voo +S V

2 voo +S V

3 AOO I Adc:-ess/Oata 0

4 AC4 Addra:s/Oata 4

5 .A.01 Address/Data 1 .

6 ACS Address/Data S

7 A02 Address/Cata 2

8 A06 AddressiOata 6

9 A03 Address/Data 3

10 A07 Address/Data 7

11 NC No C0nr.e~ion

12 NC No C;:nnec:io r.

13 AS Address 8

14 A12
I .O..dcr ass 12

Fig 15.1

- 229 -

,,,.-

HAROUA'RE

...

I I Pin number Signal name Remarks

15 A9 Address 9

16 A13 Address 13

17 A10 Address 10

18 A14 Addresl i4

19 Al 1 Address 11

20 Ai5 I Acld:-es~ 15

i
21 A16 No Conr:ec::ion

22 A18 No Connec:tion

23 A17 No Connec:ion

24 A19 f'!o C::-~ae::=:i

25 NC Ne C,nnec:ion
.

26 NC No Connec:tion

27 RO Read .,

28 WR Write .
29 10/M 10 OR Memory

30 ALE Address Late."I Enable

31 HOLO HOLO

32 HOLOA HO LO Acknowtedge

Fig 15.2

- 23~ -

HARDWARE

--:4
·&.--·fl

---'! -··.r~

Pin number I Signal name I Remarks

33 INTR INTERRUPT

34 INTA INTen Ackncwlec;e

I

35 RESET I R~----::.c. l

36 READY I READY

37 ROME RCM e:iat:le

I
38 I E E:iacle

39 BANK;:;:3 FIAM Cassette Selec: signal

40 NC No Connec:ion

41 .HAORO High Address Disable

42 LAORO Low Address Disable

43 CLJ< Clock

44 POWER RAM Protec: signal

45 GNO Ground

46 GNO Ground

47 NC No Connection

48 NC No Connection

Fig 15.3

- 231 -

HARDWARE

15.1.2 Explanation Of Pin

• 1s.1.2.1 Function Of Signal

1. Vdd COut)

If you don't use the BCD, this Pin can supply with
the current of 50mA or so.

2. A00-A07 <In/Out)

Lower 8 bits
appear- on the
machine cycle.
other cycles.

of the memory address
bus during the first

It then becomes the data

Cor I/0 address)
clock cycle of a
bus during the

3. A8-A15 COut)

The most significant 8 bits of the memory address or
the I/0 address. The output goes off during Hold mode,it
then becomes •H• level, because it is connected to a pull
up resister (100k Ohm). inside.

4. /RO COut/3-state)

The read control signal, 3-state during Hold mode.

5.- /WR COut/3-state)

The write control signal, 3-state during Hold
mode.

6. IO/M COut/3-stater

When this signal is •H• level and IL. level,

- 232 -

/

HARDWARE

f

respectively, the CPU have access to the I/0 and the
memory. 3-state during Hold mode.

-~
7. ALE (Out/3-state)

It is
(A00-A07).

8. HOLD C In)

used to strobe the address
3-state during Hold mode.

information

The CPU, upon receiving the hold request, will
relinquish the use of the bus as soon as the completion of
the current bus transfer. When the Hold is acknowledged,
the /RO, /WR, IO/M, ALE lines are 3-stated and the
A08-A015 lines are •H• level.

9 • .HLDA < Out >

It indicates that the CPU has received the HOLD
request and that it will relinquish the bus in the next
clock cycle.

10 • I NTR C In >

The general purpose interrupt. It is sampled only
during the next to the last clock cycle of an instruction
and during Hold and Halt states.

11. /INTA <Out)

It is used instead of (and has the same timing as) /RO
during the instruction cycle after an INTR is accepted.

12. RESETO (Out)

It indicates CPU is being reset. Can be used as a
system reset.

- 233 -

HAR~ARE·

13. READY Cin)

If it is •L ·, the CPU 1.,,i 11 wait an integra 1 -number of
clock. cycles for it to go •H• before completing the read

...... _. ----• ... _'-!, .. or w~j_t!t_ eye 1.e. ;;;i --~ ~.._ __ _.._ -.:.;

...

14. /ROME (Out)

The enable signal for external ROM cartridge or
general purpose. When the upper 4 bits of the I/0 address
1 s 8, it goes • L • •

4liHf38

I Gr ~~1 ~
IOIM CONi;;oL

1- 5.J.Ni< Tis IGZ Y! I .
Y.: I ----d'"IJ~

_A/4 ,4o2D IC y4.
Ys 1
~ Al3 ,a Y' I Ai2 (Rrr

y71 L.c!5 I

Fig 15.4

15. E <Out>

It is used as a memory enable signal of the read or
urite cycle. Eis the logical OR (active high) of /RO and
/WR.

Fig 15.5

- 234 -

HARDWARE

16. /BANK 3 (Out)

The memory enable signal of external RAM cartridge.
(See next section)

I -~

17. HAORSO <IN)

If it is .H.,the memory of high address (AX8000 to
AXFFFF) in PC is disabled. (See next section)

18. LAORSO (IN>

If it is .H.,the memory of LOW address ("'X0 to "'X7FFF)
in PC is disabled. (See next section)

19. CLK (Out)

2.5MHz clock output. It is the same phase as CPU
clock.

20. POWER (Out)

It is the signal /RESET (connected to the CPU) is
reversed.

- 235 -

HARDWARE

15.1.3 DC Characteristics

-------------------~----------------------Symbol Drive capacity (mA)
• -;00:;o;---------------4~4--=..---~--------

---------------------------------------­.
A8-A1S

/RD,/WR,IO/M
ALE,RESETO

HLOA,/INTA,CLK

E,/ROME,/BANK 3

Fig 15.6

4.4

4.4

2.0

1.1

- 236 -

,/

HARDWARE

15.1.4 AC Characteristics

n
.-. j ·_

I
.: ~, ,J "M

"Z' -=~ I

""' t- 2:
~
<'
Q,

- .--

L
~ ,.

'-1

i- I
i -- - -I I I I
i- i I i I

' I i

' -I
I

~ !

- .!
r.:-....

1 I~
~-~
r-~

:-J : I ~ -..

' ;
I

f-. I ~I
I.I.lo
~I
c::.
~ ,.

I ,.: ~ ~

~
Q -:-

f-
.___ i::i

~ -<
..;:

:.. -,
I

':
~

, ...
:1oo

.:.
~ ,- - ... I '

I
= ...

:ilC C
C C) ..., 0. Q

~ < <
I.I
~

Fig 15.7

- 237 -

.... -I

I

!
' '

' ...
! t
IJ
I '

I
..

..:).

J
~

1
I

i
I
I

~ lz ,_
'.~
Ci:

I

; -

>-
~ ..
Q:.

- . :-' .z
- :i- -
"' - -... -
~ ·-c

loo{
~
>-<,.;

--~
t:.:
C:

··-< ---~----·

>

HARDWARE

......

·-·~,..·.-:'7 ... --- ·:· I-- ---• ..
'

I X >< lJ I
·< • -·

~'. -·~ I
I

'
I

~ f - i -- _.

I
~

... -· I
... I

• ...
. --f- I

-,
I

L
I

i
I '
1 i

~
!

i - - , - ,. •••
l-

i
'

1
1:! - -· -! a I _ __.J

~
<
Q I . I

c-,
Ji I

- . --~ -fr l- --- i
~ I -; I
~

i! .. i Q -Q -
~ J ' I t !' . ; I

~ ~ f .. I .. i -.;; .:,
... , ,., -~!

I I"'"! . !
~: ,-,

- Q f
.,., 4' I

l ... i..... ~ : ... I t
:;

I • : ~ I -
-· I :: - ,- I

I""' ~ I i
""1 I .. i

r~ I
, I

I I I I

Fis 15.8

- 238 -
/

HARDWARE

--- --
I - " min (l\S) typ CnSl l'IIGl:(CnS,

··-~-,..., -__..._... -- ------. -----~
1 ta~ l - J407

. tl..GX I 112
t .

I t,u. I rr2
I

i,:.u. i
7i. I I I

!

t~
I I

I

! 16:? I
142

t,4~ I :r·1 I I I ! !

t..: I i ... ~ I i , - I !

tAD I I i ,. ..
~

I

=~~ I I I -.· -
I -o.;

t:11) I I 334-
I I

! tc: ; I I : !2S
, I

163 . t~. I .
t~CM i I

0 I
I 1 '

tw0&. I I 7S I
I I

I I ta. 13 I
I

I I two I 88 I
to,, I srs I r

I t:,D:v
l ! ' -~? ' : i ! ' -

l ':ART
I I ,: ... -~

! r,, :

I ~ I I H ·~:...:fY

t~--r: 1 · I

/{0 I
I

t';rrl-! I 0 I
I I

I

Fig 15.9

- 239 -

F
t HARDWARE

... .I

15.2 MEMORY CONTROL CIRCUIT

..

In this section, RAM #n means the chip number on the
main board.

-,~ . .l

The memory of PC-82~1A corisists of RAM 16K and ROM 32K
bytes,and can be expanded to 48K bytes on optional RAM socket
CRAM Chip #2- i7) and to 32K bytes on user ROM socket CROM #1)
in PC.

Show the composition of memory in Fig 15.11 RAM Chip
(#0- #7) and ROM C#0- #1) is connected to the same DATA bus
and their out~uts are controlled by /CE and /BANK signal.
There are five banks of BANK #0(available ROM #0), SANK
#1(user ROM #1), STORAMCavailable RAM #0- #1 and optional RAM
#2-#3) ,BANK #2 (optional RAM #4- *7) and BANK *3 <RAM
cartridge). Show the bank cont~ol circuit in Fis 15.12 Sy
means of this, you can assign each back to the memory address
in 64K bytes area of CPU shown in Fis 15.13 and Fi9 15.10.

Address STDRAM EANK#2
/\X FFi=t=. ·

r - - - - - - - - --~
I

I\X Eeaa
RAM~l R~M~7

Dr:F;: i

~ C0ee
RAM le

I

RAM#&
i

I\X BFFt= r - -J

RAM#2
/\~ Aa-sa_.

RAt-'f #!"

/\X 9FF F

/\t.ieee
RAM~3

I

RAM;:4 I . .
I

RAM address

- 240 -

HARDWARE

:- . .- Address· ··· --·-· · •·· ..

f\"y ---­• V' :-.-~,-

:\~ C~2::J

~i--·_m_,~_-RAM·-~----~·~!]~ ~~;;:· 1 ..
Ruf,! I

(D

2.0Nl<l#l i
I
!

?.~r-1
:.~N7:r~

,.----·-----·---------------~
I F.AM I ; P.;M RAM ~- -----. ---·· : i ffiii!:lr i :ANi<='2 i · 8~Nl#3

I! I :....--- _! ----

, ,
I
I

----------------------- ------ ----- --·-,,;-,
·-=..i

--~~t:'.f. - • -- - ••
r Si'i:AAM

~M -------~
Siuii;:.l.1

-- -----·. ---· -------·--

Fis 15.10

- 241 -

"Th« 0~ Niiliffl ~:,:: !ii''!
;! opi:0,-..1i iff'..:,,,r;,.

HARDWARE

·--.,..~-- ----~'~="J~.~--··------~·~1~;~~-----_-__ .. I~ l: ~- l ~ I ---~IQ~~,_ .. · -.. ~ ~~~ .. ,- ----
-x

i I
11

- ;it i_- 71 ,., ~. - -··-----~-, ~-= I ! i :r. - ~ - .. ._..:J ,.. ~) : ,d~"i C' ,: !,'__J* .
i ~ 1 I '-" ,

---'-i~ ~~! J I g -¾~ '
•-r.lt ,1· ___ . - 1:~~:< 'ill~~-=~f', : ! :t-~<"'0:···,----

1&: I

1

, I ~- I
I 31: I ! ~ I

~ ~

!
;

'·
;
:
I

I i

'
;

!
I

i
i
i

'
;;

I
I
l ?-,

I ... ·s
I

:
I =
I
i :

I
l

C: -~
·;:;
:
~ s

(..:
I

• c-~;- !! -' • • o_ ~:1:J, • ~--~o::::i:~,,---- ~-~--~
'~l ~-. ------,11~ ~~ ~1, ,-/ ~'fii :1"~..-----.

~ 1 ___ :i::..·----...L....~

J J I ! ~------,J il
I-·

Fig 15.11

- 242 -

HARDWARE

··:~
. .--.. --. - ·. - 'f" - . ..f

IOIM~ AIJ' '

LADRS ! ',001r.Q 4-0Hl'TS-· t:.G - . - . ·-- -
,...___ Ya..,_-----~

A!la I jro rG/ . -y,------~ ,. :,l,N K.;t I

Yi ~
At1 --,----.W 2Q;----.: _{___/--~

.4Z2 1 1=~ J"'H: ~ :n , _ I , • ., .. l ,. Ya I !l't.i(;:.;-4

,&, . i .. ,., a "I i . D
l I ~ I ,· - --; • .'.t(,S• l ; y,;· - - -
i i --1LJ

,;..:..·J:< --+0--1 i .
~ ---..:.. I ~i,,::J?

I ;
. :n? --=5\:-1
:t-~:u --;--.:,___,./

'f.,./o.;~

~ank Control C;,-e.wf:

Fig 15.12

~I'@' If· Ii I _~CD; 2 1@1·1:-;® ©lCVt®t
LAERI I O I O I O I O I o/ 0 I I I '
UDR2 I O I O I O I f I l I

I I I O I (
HADRI j O I I , I o r I

I I I 0 0

HADR2 I O ~ 0 I I 0 0 I I I 0 0

Fi9 15.13

- 243 -

r :

·--~

HAROUARE

The way of bank conversion by software control
illustrates in next section. When PC is reset, it becomes any
mode (before reset)of the composition No.1-3. But in the case
of nothing of optional RAM BANK #2- #3, it can become only
No.1 mode. If optional ROM is~ins~alled, another composition
No.4-6 are possible. Further, as it becomes the mode of 64K
bytes full RAM by optional RAM BANK #2- #3, you can use a
CP/M, etc.

- 244 -

HARDWARE

- f .

15.3 I/O ADDRESS

(Address is expressed in Binary.) l

I/O address:In/Out: I/O device:Operation
-----~--

00000000 -:

V
01011111

01100000

V ·.
01111111

user

NEC reserve

---·
1000XXXX 0 NEC reserve CROM cartridge

1001XXXX 0

I .,

: or general purpose) A decoded
: signal appears on /ROME pin.

D-FF System Control
*Cassette Motor Control,
*Clock Command Strobe
*Printer Strobe
*Serial I/F Select

--~:
1010XXXX : 0 : O-FF l Bank Control

---·
1010XXXX I 3-S :

-Buff: Bank Status
*Bank Status
*Serial I/F Select

Status
-----------------~---------------------------

1011X000 :I/O PPI
81C55 Command/Status Resister

1011X001 0 Port A Output
*LCD Chip Select
*Printer Data
*Keyboard Scan Data
*Clock Command/Data

:------------------------

- 24S -

HARDWARE

:----------- ------------------------
1011x010 0

·'

1011X011 I

Port 8 Output
*LCD Chip Select
*Buzzer Control
*RS-232C Control
*Auto Power Off

Control
------------------------Port C Input

*Clock Data
*Printer Status
*BCR Data
*RS-232C Status

, 1011X100 0 Timer Resister-

1011X101 0

Clower 8 bits)
*Lower 8 bits of counter-

.------------------------
: Timer Resister
: (upper 8 bits)
l*Upper- 6 bits of counter
l*Mode Select

1100XXXX :I/01 UART:

--------------~:
1101XXXX : 0:

1101XXXX f I
I
I
I .
I

6402: Data Urite/Data Read
:-----------------------

Control

3-S-:
Buff: Input Port

*UART Status
*Low Power Signal

~----------------------~-----------------------1110XXXX : I : 3-S-:
Buff: Keyboard Input

---: 1111XXX0 : 0: LCOC: Command Write/Status
Read

---------------; :------------------------:
1111XXX1 : 0 : : Data Ur-ite/Data Read

~---
Fig 15.14

- 246 -

HARDWARE

15.3.1 Detail Information About I/0

This following is the particulars of each function.
The I/0 address is shown in the number which is used really in

· ~ system; - ~.t

15.3.1.1 Reserve Area

As this area is reserved for NEC,don't use it.

15.3.1.2 System Control

11 0 0 1 0 0 0 0: OUT AX90

7 6 5 4 3

:SELA:SELB:PSTB:TSTB:REMOTEI
---------------- ------------REMOTE CASSETTE MOTOR CONTROL

0 motor Off
1 motor On

TSTB CLOCK COMMAND STROBE
0 Strobe Off
1 Strobe On

PSTB PRINTER STROBE
0 Strobe Off
1 Strobe On

SEL A SEL B SERIAL INTERFACE SELECT
0 0 Not used
0 1 SI02
1 0 SIOl
1 1 RS-232C

- 247 -

HARDWARE

15.3.1.3 Bank Control

:1 0 1 0 0 0 0 1l OUT ~Al 4 ~

3 2 1 · 0
---------------------------------lHAR02lHARD1lLAOR2lLADR1l

LADR 2 LAOR 1 SELCT ADDRESS AX0 To AX7FFF
0 0 Bank #0 <ROM #0)
0 1 Bank #1 · <ROM #1)
1 0 Bank #2 <RAM #4 - #7)
i 1 Bank #3 <RAM cartridge)

HADR 2 HADR 1 SELECT ADDRESS
(AX8000 TO AXFFFF>

0 0 Standard RAM CRAM #0 - #3)
0 1 Not Used •
1 0 Bank #2 CRAM #4 - #7)
1 1 Bank #3 CRAM Cartridge)

- ·---- 248 -

I
HARDWARE

15.3.1.4 Bank Status

.! : 1 0 1 0 0 0 0 0: IN "XA0 .-4

7 6 3 2 1 0

BIT 1 BIT 0 STATUS OF ADDRESS
<"'X0 TO "X7FFF)

0 0 Bank #0 <ROM #0)
0 1 Bank #1 <ROM #1)
1 0 Bank #2 CRAM #4 - #7).
1 1 Bank #3 (RAM cartridge)

BIT 3 BIT 2 STATUS. OF ADDRESS
<"X8000 TO "XFFFF)

0 0 Standard RAM CRAM #0 - #3)
0 1 Not Used
1 0 Bank #2 <RAM #4 - #7)
1 1 Bank #3 (RAM cartridge)

BIT 7 BIT 6 STATUS OF SERIAL INTERFACE

0 0 Not used
0 1 SI02
1 0 S101
1 1 RS-232C

- 249 -

HAROUARE

15.3.1.5 PIO 81CSS Address

*Command I Status Resister
-~ .. d ..

:1 0 1 1 1 0 0 0: IN/OUT Axes

*Port A output

:1 0 1 1 1 0 0 1: OUT AXB9

7 6 s 4 3 2 1 0

lPA7lPA6:PA5:PA4lPA3:PA2lPA1:PA0:

lP07:P06lP05lP04lP03:P02:P01lP01:

lKS7:KS6lKS5:KS4lKS3lKS2lKS1lKS0:

:ccK:co0:c2 :c1 :ce :

PA7 to PA0 LCD Chip Select

P07 to P00 Printer Data Port

KS7 to KS0 Keyboard
.

C2 to C0 Clock command Output Port·

CO0 Clock Data Output Port

CCK Calendar Shift Clock
0 Clock Off
1 Clock On

*Port B Output

:1 0 1 1 1 0 1 0: OUT ""XBA

- 2se -

HARDWARE

•

7 6 5 4 3 2 1 0
----------------------------------:---:---: :DcD1:--: :
:RTS:DTR:BELL:APO:RD :MC:PB1:PB0:
---------~-----------~--~~----:-------------------------------------· :Kss:

PB1 -- PB0

MC
0
1

OCO/RO
0
1

AP0
0
1

BELL
0
1

DTR

RTS

LCD Chip Select

MEMORY CONTROL OUTPUT
On
Off

OCO/RO SELECT OF THE RS-232C
Ring Detect
Data- Carrier Detect

AUTO POWER OFF OUTPUT
Output Off.
Output On

BUZZER OUTPUT
Ring
Not Ring

RS-232C OTR output Active Low

RTS output Active Low

- 251

HARDWARE

*'Pol"'t C Input

CDI

SLCT
0
1

BCR

CTS

DSR

:1 0 1 1 1 0 1 1:

5 4 3

IN "'XBB
_..J J

2 1 0
.-----------------------------------

I --- : --- : I :
:osR:CTSLBCR:BUSYiSLCT:cor:

----~------------------------------
Clock Data Input Port

PRINTER BUSY
Printer Ready
P,-intel"' Busy

Bar Code Reade,- Data Input Port

CTS Input Active Low

RS-232C OSR Input Active Low

- 252 -

HARDWARE

*81CSS Timer Resister

:1 0 1 1 1 1 0 0: OUT/IN AXBC ----------------- -~. ~

7 6 5 4 3 2 1 0

lTL7lTL6lTLSlTL4lTL3lTL2lTL1lTL0:

TL7 -- TL0 Timer Counter Lower 8 bit

:1 0 1 1 1 1 0 1: OUT/IN AXBO

7 6 S 4 3 2 1 0

lM2:M1:THS:TH4lTH3:TH2lTH1lTH0:

•
THS -- TH0 Timer Counter Upper 6 bit

M2 M1

0 0

0 1

1 0

1 1

This-mode transmits a single­
square wave which the first
half of the number of count
is high and remaining 1s low.
(Mode 0)

This mode continually transmits
a Mode 0 type square wave.
(Mode 1)

Thi9 mode transmits a L-pulse
(single pulse) during one
clock when finishing the
terminal count.
(Mode 2)

This mode c6ntinually transmits
a Mode 2 type pulse.
(Mode 3)

- 253 -

HARDWARE

15.3.1.6 UART Data I/O Port

-------------------:1 1 0 ~ 1 0 0 0: IN1qur ?fC8

UART DATA PORT

15.3.1.7 UART Control Port

*Command Write

:1 1 0 1 1 0 0 0: our AxDs

:cLS2:CLS1lPI:EPE:ses:

SBS STOP BIT SELECT

0 Stop bit length is 1 bit

1 Stop bit length is 1 bit.
If data length is S bits,
stop bit length is 1,5 bits.
lh the other case, it is 2 bit.

EPE EVEN PARITY ENABLE

0 Odd Parity

1 Even Parity

Pl PARITY INHIBIT

0 Generate parity and check

1 Inhibit generating parity

- 254 -

HARDWARE

and check

CLS 2 CLS 1 CALENDAR LENGTH SELECT
~ ,~

. "'
0 0 Data Length s bits

0 1 Data length 6 bits .
1 0 Data length 7 bits

1 1 Data length 8 bits

- 255 -

HARDWARE

..i

DCO/RO

0

1

OE

1

FE

1

PE

1

TBRE

1

LPS

1

*Status read

:1 1 0 1 1 0 0 0: IN AXO8

7

:LPS:

-
4 3 2 1 0

ITBRE:PElFE:OE:--:- /--:
:oco1 RD:

Data Carrier Detect/Ring Detect

On

Off

Overrun Error

Detected

Framing Error

Detected

Parity Error

Detected

Transmitter Buffer register Empty

ready to receive data to transmit

LOW POWER SIGNAL

low power voltage

- 256 -

HARDWARE

15.3.1.8 Keyboard Input

:1 1 1 0 1 0 0 0: IN -.iXE8~ .

15.3.1.9 LCDC Address

* Command Write /Status Read

:1 1 1 1 1 1 1 0: IN/OUT AXFE

* Data Write/Read

:1 1 1 1 1 1 1 1: IN/OUT AXFF

- 257 -

